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DYNAMICS OF CORIOLIS VIBRATORY GYROSCOPES
IN CONTROL SYSTEMS

Analysis of the Coriolis vibratory gyroscopes sensitive element dynamics in terms of the amplitude-phase vari-
ables led to the proper transfer functions of such inertial sensors is proposed in this paper. Obtained transfer func-
tions are then analysed and simplified for the several special cases. Performance of the simplified transfer functions
is also analysed compared to the accurate numerical model of the sensitive elements dynamics. Obtained transfer
functions enable study of the Coriolis vibratory gyroscopes as elements of control systems.
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Introduction

Coriolis vibratory gyroscopes (CVGs) received
significant amount of interest from the both scientific
and engineering communities due to the possibility to
fabricate sensitive elements of such gyroscopes in
miniature form by using modern microelectronic mass-
production technologies. Such gyroscopes are fre-
quently referred to as MEMS (Micro-Electro-
Mechanical-Systems) gyroscopes. Being based on sens-
ing of Coriolis acceleration due to the rotation in oscil-
lating structures, CVGs have a lot more complicated
mathematical models, comparing to the conventional
types of gyroscopes. One of such complication is a re-
sult of the useful signal proportional to the external an-
gular rate being modulated with the intentionally ex-
cited primary oscillations [1 — 3]. From the mathemati-
cal modelling point of view, this leads to necessity to
“demodulate” the solution in terms of the sensitive ele-
ment displacements to obtain practically feasible in-
sights into CVG dynamics and errors.

Current state analysis. From the control systems
point of view, conventional representation of CVGs
incorporates primary oscillation excitation signal as an
input to the dynamic system, and unknown angular rate
as a coefficients of its transfer functions [3]. As a result,
dynamics of CVGs has been analysed mainly in steady
state, while transient process analysis has been omitted
due to its apparent complexity.

This paper describes new method of CVG dynam-
ics analysis by means of complex amplitude-phase vari-
ables, which enables having angular rate as an input to
the dynamic system.

Problem formulation. In the most generalized
form, motion equations of the CVG sensitive element
both with translational and rotational motion could be
represented in the following form:

Xl + 2Q1kl)'<1 + (kf —d]_QZ)Xl + g].QXZ + dSQXZ = ql (t), (1)
XZ + 2C2k2X2 +(k% —szz)Xz —ng)'(l —QXl = q2 (t)

Here x; and x, are the generalized coordinates
that describe primary (excited) and secondary (sensed)
motions of the sensitive element respectively, k; and

k, are the corresponding natural frequencies, ¢; and
€, are the dimensionless relative damping coefficients,

Q is the measured angular rate, which is orthogonal to
the axes of primary and secondary motions, gq; and g,

are the generalized accelerations due to the external
forces acting on the sensitive element. The remaining
dimensionless coefficients are different for the sensitive
elements exploiting either translational or rotational
motion. For the translational sensitive element they are
dp=dy =1, d3=my/(my+my), gy =2m,/(myg+m,),
g, =2, where were m; and m, are the masses of the

outer frame and the internal massive element. In case of
the rotational motion of the sensitive element, these
coefficients are the functions of different moments of
inertia (for greater details see [4]).

In the presented above motion equations, the angu-
lar rate is included as an unknown and variable coeffi-
cient rather than an input to the double oscillator sys-
tem. Conventional control systems representation of
such a dynamic system is shown in Fig. 1.
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Fig. 1. Conventional representation of CVG
in control systems
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In order to identify the angular rate one must de-
tect secondary oscillations of the sensitive element and
measure its amplitude, which is approximately directly
proportional to the angular rate, and phase, which gives
the sign.

Compatible with the most control problems
CVG dynamics representation should have the un-
known angular rate as an input and its measured
value as an output.

Main section

Motion equations simplifications. In order to
make the equations (1) suitable for to the transient proc-
ess analysis we must make the following assumptions:
angular rate is small comparing to the primary and sec-
ondary natural frequencies so that

k? >>dQ?; k3 >>d,0?, @)

and rotational and Coriolis accelerations acting along
primary oscillation axis are negligible in comparison to
the accelerations from driving forces

G, +dgOxp << gy (t). (3)

Taking into considerations assumptions (2) and
(3), motions equations (1) could be simplified to the
following form:

{X1+2C1k15<1+k12><1 = (t); @)

XZ + 2(_,2'(25(2 + k%Xz = gZQ)'(l +QX1.

Here we also assumed that no external driving
forces are affecting the secondary oscillations, which
means that g, (t)=0. System of equations (4) is now
perfectly suitable for further transformations towards
the desired representation in terms of the unknown an-
gular rate.

Amplitude-phase motion equations. As has been
shown in [5], by means of a proper chosen phase shift of
the excitation voltage applied to the sensitive element,
the excitation force could be shaped to the perfect har-
monic form. Using exponential representation of com-

plex numbers, such a driving force gy (t) could be rep-
resented as

; joot
0 (t) = dyo Sin(wt) = Im{gy0e’ '} ®)
Here o is the excitation frequency given in radi-
ans per second, ;g is the constant excitation accelera-

tion amplitude.

Non-homogeneous solutions of the motion equa-
tions (1) or (4) for primary and secondary oscillations
are searched in a similar form

X1 (t) = Im{Al(t)ej‘*’t}; A (t) =Agp (t)eJ'(Pm (9) :

Xo (1) = IM{A (D)} ; A, (t) = Ag (1e!*2®  (6)

where Aqq and A,y are the primary and secondary
oscillation amplitudes, ¢ and ¢, are the corre-

sponding phase shifts relatively to the excitation force.
Although these quantities are real (non-imaginary), they
are combined in complex amplitude-phase variables A

and A, .

Substituting expressions (5) and (6) into equations
(4) results in the following motions equations in terms
of the complex amplitude-phase variables rather than
real generalized coordinates:

Al + Z(Clkl + JCO)Al +

+(kf — 0 + 2jokG)A; = go;

A, +2(Coky + jo)Ay + (K3 —0? +
+2jokaG2) Az = (j0gQ+Q)A +9rAQ

U]

Equations (7) describe variations of the amplitude
and phase of the primary and secondary equations in
time with respect to the unknown non-constant angular
rate Q(t) . This allows conducting analysis of the Corio-

lis vibratory gyroscope dynamics without constraining
the angular rate to be constant or slowly varying.

Analysing system (7), one can see that the first
equation can be solved separately from the second one.
After homogeneous solutions of the first equation faded
out, only non-homogenous solution remains. In this
case, amplitude of the primary oscillations is

_ %10
1= k2 2 . 1 (8)
11— + 2]k1€10)

and it is constant in time, yielding A; = A; =0. Indeed,
most of the time measurements of the angular rate are
performed when primary oscillations have already set-
tled. As a result, only equation for the secondary oscilla-
tions remains, in which the complex primary amplitude
A, is just a constant parameter given by (8):

A, +2(6oky + j)Ay + (k3 -0 +

. _ . ©)
+2jwkoCo)As = (jogQ+Q)A.

Equation (7) now describes amplitude-phase of the
secondary oscillations with respect to the settled pri-
mary oscillations.

System transfer functions. Having CVG sensitive
element motion equation in the form (9), allows analysis
of its transient processes in amplitudes and phases with
respect to arbitrary angular rates applied to the system.
Application of the Laplace transformation to the equa-
tions (7) with respect to zero initial conditions for all
time-dependent variables results in the following ex-
pressions:

[(s+ j@)? +2Cka (s + joo) + k51A, (s) =

. (10)
= Aqls+ jg,0100).
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Solution of the algebraic equation (10) for the sec-
ondary amplitude-phase Laplace transform is

A - (s+jg,om)
(5+ jo)? + 26,k (5 + jo) + k3

A, = Q. 11

Considering the angular rate as an input, the sys-
tem transfer function for the secondary amplitude-phase
is
A(8) _

Q(s)
_ Aq(S+igp0) _
(5+ j0)? + 20Ky (5 + jo) + k3
_ Gao (S +1920)
[(s+ jo)? + 285k, (s + jo) + k3]
1
X .
[k{ -0 + 2jokyG;]

Wy (s) =

(12)

X

One should note that transfer function (12) has
complex coefficients, which results in the complex sys-
tem outputs as well. Although it is somewhat unusual, it
still enables us to analyse CVG dynamics and transient
processes due to the angular rate in an open-loop dy-
namic system.

Amplitude and phase responses. In order to cal-
culate the amplitude response of the system using trans-
fer function (12), Laplace variable s must be replaced
with the Fourier variable j), where A is the frequency

of the angular rate oscillations:
Wa (JA) =
_ 1930 (A +gpm)
[k3 — (1 + )% +2jCok, (L + )]
1
X .
[kf - +2joliki]

x (13)

Absolute value of the complex function (13) is
the amplitude response of the secondary oscillations
amplitude to the harmonic angular rate, and the cor-
responding phase of the complex function is the
phase response [5]:

AQ) =
010 (A +gp0)

= 1)(

[(K3 - (0 + ©)%)2 +4C3KZ (1 + ©)2]2
1

X

1 ;
[(k? - 0?)? + 42k20?]2
o) =tan AT - O+ )Nl —0']-
—A_14k1k2€1C2C0(7\, + 0)),
A =2[KpCp (M +0)(KZ — %)+
+hyGgo(k3 — (A +)?)].

One should note that, assuming constant angular
rate (A =0) in the expressions (12) the well known
expressions ([4]) for the amplitude and phase of the
secondary oscillations is obtained.

Analysis of the expressions (12) shows that effect
from the oscillating angular rate is practically equivalent
to shift of the excitation frequency by the frequency of
the angular rate. This causes CVGs, especially those
with high Q-factor, to loose its resonant tuning, which
in turn results in significant variation of its scale factor
(dynamic error). Solution of this problem by means of
proper choice of natural frequency split and damping
has been suggested in [6].

System poles and stability. Both stability and
unit-step transient process quality depend on position of
the system poles in the real-imaginary plane. Poles of
the transfer function (12) are as follows:

12 =—koGo £ jky 1-C5 - jo. (15)

Analysing expressions (15), it is easy to see that
CVGs are inherently stable.
Indeed, if the relative damping coefficient ¢, <1,

then real parts of the poles are
—k28;2 <0.

If the relative damping coefficient ¢, >1, then
real parts are

—ka (G £4CE 1) <0.

Ideal (half-oscillatory) unit-step angular rate tran-
sient process in secondary oscillations amplitude is
achievable if imaginary parts of the poles (15) are zero.

One pole has large imaginary part

—kza/l—gg ~0<0,

which is always way below zero, and corresponds to
high frequency oscillations in the envelope.

The second pole is responsible for the low fre-
quency oscillations, and is the most essential for the
transient process.

Case of slowly varying amplitudes. Another con-
sequence of the presented above analysis of the system
poles is that actual amplitude of the secondary oscilla-
tions is mainly defined by the low frequency pole, while
effect from the high frequency pole can be neglected,
since it will be removed during demodulation process.
In other words, predominant behaviour is a slow varia-
tion of the amplitude and phase. Neglecting the second
order derivative in the equation (9) yields

2(Gokg + j0)A + (k5 — 0 +2jokaGy)A, =
= (jog,Q+Q)A,

and the corresponding angular rate transfer function
becomes
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W, =
_ Q10 (S +jgom)
[265kp5+ K3 — 0 + j20(G ok, +5)]
1
X 2 2 - .
[k{ —o” +2joki§]

X (16)

Complex transfer function (16) is simpler in com-
parison to the function (12) and could replace it in cer-
tain specific problems when slow oscillations analysis is
required.

Real and imaginary transfer functions. While
simulating dynamics of CVG based on the complex
amplitude-phase transfer functions (12) or (16) one
could have problems dealing with complex coefficients
of these transfer functions.

One way to avoid this problem is to consider real
and imaginary parts of complex amplitude as separate
signals, which are then combined together to produce
real amplitude and phase.

In order to obtain transfer functions for such
signals let us represent primary and secondary ampli-
tudes as:

AL =AR +JAL Ax =Agr +]Ay . (17)

Primary oscillations components can be easily
found by means of substituting expressions (17) into
formula (8) thus yielding

Ag - duo (Kf - %)
(k? —0?)? + 4k2 2 0?
2010joki&y _
(ki —0%)? + 4k i o?

(18)

Ay =-

At the same time, substituting expressions (18)
into the motion equation (9), and applying Laplace
transformation with zero initial conditions gives

(k3 — 0% + 2K,Cp5+52) AR (5) -
—20(KpCp +9)Az (s) =
= (A1rS — A J20)<X(s);
(k3 — 02 + 2KoCp5+52) Ay (5) +
+20(KyC7 +9)AR (5) =
= (Ays+ARG20)CX(s).

(19)

Resolving algebraic system (19) with respect to
unknown real and imaginary parts of the secondary
complex amplitude results in

AjRMRgR (S) + Ay Mg (s)

AR () = PO Q(s);
(20)
Ay (S) = ARMr (53(:)A1I My (5) ).

Here the numerator polynomials from the real and
imaginary parts of primary amplitudes are given by the
following expressions:

Mgg (s) =
= 5(k5 + 2kCps+5%) — 02 (s 205 (s +KoCp)):

Mg (s) =
= @[ 25(5+KpCp) — Uy (K3 — 2 + 2KpG o5 +52)];

M =

n(s) 1)

= 2020, (5+KpCp) +5(K3 — 0% + 2Ky 5 +52)];

Mig(s)=
= [0 (k5 — 0 +2ky(ps+5°) — 25(s + KoCo);

P(s) =

= 4(5+Ky0p) 2 0% + (K3 — 0% + 2Ky p5+52)2.

Obtained expressions (18), (20), and (21) allow
analysis of CVG dynamics in control system without
necessity to involve complex-valued signals.

Simplified transfer function and its accuracy.
There is quite an important special case, when complex
transfer functions transform to the simple real-valued
one. Assuming equal primary and secondary natural
frequencies (k; =k, =k), equal damping ratios
(& =&, =C), resonance excitation (o=k), and con-
stant angular rate, one can easily obtain

A20(S) = \A3R (5) + A3 5) =

__ %092
4k2¢(s+KQ)

(22)

In this case, secondary amplitude (22) is related to
the input angular rate by means of the following transfer
function:

Ax(Ss) 01092

- . 23
Q@6)  ak?¢(s+ko) =

W (s) =

As one can see, the simplified CVG transfer func-
tion (23) describes a simple first-order system with ex-
ponential transient process. Needless to say, that possi-
bility to use function (23) for “non-tuned” CVG as well
is highly desired. Therefore let us evaluate accuracy of
the function (23) in representing general case of CVG
dynamics. In order to do that, let us compare transient
processes produced by the simplified transfer function
and by a numerical solution of the equations (1) with
subsequent demodulation. As a performance criterion
the following integral function is used:

.
I3k, 85) = [[Agn(t) ~Agp (B dt .
0

(24)

Here ok =k, /k; is the ratio of the natural fre-
quencies, 8 =C, /&, is the ratio of the relative damp-

ing ratios, AZO (t) is the demodulated secondary ampli-
tude produced by the “realistic”” model.
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Graphic plot of the functional (24) is shown below Conclusions

in the fig. 2.
! 9 Presented above analysis of CVG dynamics using

s - - - — amplitude-phase complex variables resulted in obtaining
system transfer functions, where measured angular rate
became an input rather than a parameter. This makes
possible to analyse amplitude and phase responses of
CVG, its transient processes in already demodulated
signals, optimise transient process characteristics. Ex-
cellent performance of the obtained simplified transfer
functions has been demonstrated using numerical analy-
sis of the integral error analysis.
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JAHAMIKA KOPIOJICOBHUX BIGPALIIMHUX I'POCKOIIIB
B CUCTEMAX KEPYBAHHS

B.O. Anocroiox

B yiti cmammi 3anpononoeano ananiz OUHAMIKU Yymaueo2o eileMeHma Kopionico8ux 8i0payitinux ipockonie 6 amniimyo-
HO-ha306Ux 3MIHHUX, WO 8ede 00 8UBEOEHHS KOPEKMHOI nepedamHoi QyuKyii maxux inepyianvHux oamyuxie. Ompumara nepe-
dammna Qynkyia npoananizoéana ma cnpowena Oas OeKibKOX 8adlCIUBUX HACMKOBUX 6unaokis. Taxodc 6yno npoananizoeaHo
AKicmb cnpoweHoi nepedamuoi QyHKYii NOPIGHAHO 13 MOYHOIO YUCeTbHOI0 Modeanio. Ompumana nepedamua yHKyis 0036015€
8UBUEHHSL KOPIONICOBUX 8IOPAYTIIHUX 2IDOCKONIB AK eleMeHMI8 cucmem KepyeanHsi.

Knruoei cnosa: xopionicosuil ibpayitinuii 2ipocKon, OUHAMIKA, KOHMPOLbHI CUCEMU.

JUHAMMUKA KOPUOJIMCOBBIX BUBPAIIUOHHBIX TNPOCKOIIOB
B CUCTEMAX YIIPABJIEHUSA

B.A. Anocromiok

B smoil cmamve npeonodicen ananu3z OUHAMUKU 4YECMEUMENbHO20 dNEMEHMA KOPUOIUCOBBIX BUOPAYUOHHBIX SUPOCKONOE 8
AMNAUMYOHO-(PA308bIX NEPEMEHHBIX, KOMOPbLIL NO3605em NOLYYUNb KOPPEKMHYIO NEPEOamOYHYI0 QYHKYUIO MAKUX UHEPYUATb-
Hblx damyukos. Tlonyuennas nepedamounas yHKyus RPOAHAIUSUPOSAHA U YAPOWEHA OISl HECKOIbKUX BANCHBIX YACMHBIX CILY-
yaes. Taxoice ObLIO NPOAHATUZUPOBAHO KAYECMBO YIPOUCHHOU NepedamoyHol (GYHKYuu no CPAGHEeHUuI0 ¢ MOYHOU YUCIEHHOU
mooenvio. Tlonyuennas nepedamounas QyHKyus no3gosem u3yuiams KOPUOTUCOBbL GUOPAYUOHHbBIE UPOCKONbI KAK DNIeMEHIMbL
cucmem ynpagienus.

Knrwuesvie cnosa: kopuonucoswiil 6UOpayuOHHbIU 2UPOCKON, OUHAMUKA, KOHMPOJIbHbLE CUCTHEMDI.
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