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DYNAMICS OF CORIOLIS VIBRATORY GYROSCOPES  

IN CONTROL SYSTEMS 

 
Analysis of the Coriolis vibratory gyroscopes sensitive element dynamics in terms of the amplitude-phase vari-

ables led to the proper transfer functions of such inertial sensors is proposed in this paper. Obtained transfer func-

tions are then analysed and simplified for the several special cases. Performance of the simplified transfer functions 

is also analysed compared to the accurate numerical model of the sensitive elements dynamics. Obtained transfer 

functions enable study of the Coriolis vibratory gyroscopes as elements of control systems.  
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Introduction 

Coriolis vibratory gyroscopes (CVGs) received 

significant amount of interest from the both scientific 

and engineering communities due to the possibility to 

fabricate sensitive elements of such gyroscopes in 

miniature form by using modern microelectronic mass-

production technologies. Such gyroscopes are fre-

quently referred to as MEMS (Micro-Electro-

Mechanical-Systems) gyroscopes. Being based on sens-

ing of Coriolis acceleration due to the rotation in oscil-

lating structures, CVGs have a lot more complicated 

mathematical models, comparing to the conventional 

types of gyroscopes. One of such complication is a re-

sult of the useful signal proportional to the external an-

gular rate being modulated with the intentionally ex-

cited primary oscillations [1 – 3]. From the mathemati-

cal modelling point of view, this leads to necessity to 

“demodulate” the solution in terms of the sensitive ele-

ment displacements to obtain practically feasible in-

sights into CVG dynamics and errors.  

Current state analysis. From the control systems 

point of view, conventional representation of CVGs 

incorporates primary oscillation excitation signal as an 

input to the dynamic system, and unknown angular rate 

as a coefficients of its transfer functions [3]. As a result, 

dynamics of CVGs has been analysed mainly in steady 

state, while transient process analysis has been omitted 

due to its apparent complexity.  

This paper describes new method of CVG dynam-

ics analysis by means of complex amplitude-phase vari-

ables, which enables having angular rate as an input to 

the dynamic system. 

Problem formulation. In the most generalized 

form, motion equations of the CVG sensitive element 

both with translational and rotational motion could be 

represented in the following form: 

 

 

2 2
1 1 1 1 1 1 1 1 2 3 2 1

2 2
2 2 2 2 2 2 2 2 1 1 2

x 2 k x (k d )x g x d x q t ;

x 2 k x (k d )x g x x q t .

          


        

  

  
(1) 

Here 1x  and 2x  are the generalized coordinates 

that describe primary (excited) and secondary (sensed) 

motions of the sensitive element respectively, 1k  and 

2k  are the corresponding natural frequencies, 1  and 

2  are the dimensionless relative damping coefficients, 

  is the measured angular rate, which is orthogonal to 

the axes of primary and secondary motions, 1q  and 2q  

are the generalized accelerations due to the external 

forces acting on the sensitive element. The remaining 

dimensionless coefficients are different for the sensitive 

elements exploiting either translational or rotational 

motion. For the translational sensitive element they are 

1 2d d 1  ,  3 2 1 2d m m m  ,  1 2 1 2g 2m m m  , 

2g 2 , where were 1m  and 2m  are the masses of the 

outer frame and the internal massive element. In case of 

the rotational motion of the sensitive element, these 

coefficients are the functions of different moments of 

inertia (for greater details see [4]).  

In the presented above motion equations, the angu-

lar rate is included as an unknown and variable coeffi-

cient rather than an input to the double oscillator sys-

tem. Conventional control systems representation of 

such a dynamic system is shown in Fig. 1. 
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Fig. 1. Conventional representation of CVG  

in control systems 
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In order to identify the angular rate one must de-

tect secondary oscillations of the sensitive element and 

measure its amplitude, which is approximately directly 

proportional to the angular rate, and phase, which gives 

the sign. 

Compatible with the most control problems  

CVG dynamics representation should have the un-

known angular rate as an input and its measured 

value as an output. 

Main section 

Motion equations simplifications. In order to 

make the equations (1) suitable for to the transient proc-

ess analysis we must make the following assumptions: 

angular rate is small comparing to the primary and sec-

ondary natural frequencies so that  

 2 2
1 1k d  ; 2 2

2 2k d  ,    (2) 

and rotational and Coriolis accelerations acting along 

primary oscillation axis are negligible in comparison to 

the accelerations from driving forces 

  1 2 3 2 1g x d x q t    .    (3) 

Taking into considerations assumptions (2) and 

(3), motions equations (1) could be simplified to the 

following form: 

 
 2

1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 1 1

x 2 k x k x q t ;

x 2 k x k x g x x .

    


     

 

  
  (4) 

Here we also assumed that no external driving 

forces are affecting the secondary oscillations, which 

means that  2q t 0 . System of equations (4) is now 

perfectly suitable for further transformations towards 

the desired representation in terms of the unknown an-

gular rate. 

Amplitude-phase motion equations. As has been 

shown in [5], by means of a proper chosen phase shift of 

the excitation voltage applied to the sensitive element, 

the excitation force could be shaped to the perfect har-

monic form. Using exponential representation of com-

plex numbers, such a driving force  1q t  could be rep-

resented as 

   j t
1 10 10q t q sin( t) Im{q e }   .  (5) 

Here   is the excitation frequency given in radi-

ans per second, 10q  is the constant excitation accelera-

tion amplitude.  

Non-homogeneous solutions of the motion equa-

tions (1) or (4) for primary and secondary oscillations 

are searched in a similar form 

  j t
1 1x t Im{A (t)e } ;   10j (t)

1 10A t A (t)e


 ; 

  j t
2 2x t Im{A (t)e } ;    20j (t)

2 20A t A (t)e


 , (6) 

where 10A  and 20A  are the primary and secondary 

oscillation amplitudes, 10  and 20  are the corre-

sponding phase shifts relatively to the excitation force. 

Although these quantities are real (non-imaginary), they 

are combined in complex amplitude-phase variables 1A  

and 2A . 

Substituting expressions (5) and (6) into equations 

(4) results in the following motions equations in terms 

of the complex amplitude-phase variables rather than 

real generalized coordinates: 

1 1 1 1

2 2
1 1 1 1 10

2 2
2 2 2 2 2

2 2 2 2 1 2 1

A 2( k j )A

(k 2j k )A q ;

A 2( k j )A (k

2j k )A ( j g )A g A .

     

     


      

       

 

 



  (7) 

Equations (7) describe variations of the amplitude 

and phase of the primary and secondary equations in 

time with respect to the unknown non-constant angular 

rate (t) . This allows conducting analysis of the Corio-

lis vibratory gyroscope dynamics without constraining 

the angular rate to be constant or slowly varying. 

Analysing system (7), one can see that the first 

equation can be solved separately from the second one. 

After homogeneous solutions of the first equation faded 

out, only non-homogenous solution remains. In this 

case, amplitude of the primary oscillations is 

 10
1 2 2

1 1 1

q
A

k 2jk


   
,      (8) 

and it is constant in time, yielding 1 1A A 0   . Indeed, 

most of the time measurements of the angular rate are 

performed when primary oscillations have already set-

tled. As a result, only equation for the secondary oscilla-

tions remains, in which the complex primary amplitude 

1A  is just a constant parameter given by (8): 

 
2 2

2 2 2 2 2

2 2 2 2 1

A 2( k j )A (k

2j k )A ( j g )A .

      

     

 


   (9) 

Equation (7) now describes amplitude-phase of the 

secondary oscillations with respect to the settled pri-

mary oscillations. 

System transfer functions. Having CVG sensitive 

element motion equation in the form (9), allows analysis 

of its transient processes in amplitudes and phases with 

respect to arbitrary angular rates applied to the system. 

Application of the Laplace transformation to the equa-

tions (7) with respect to zero initial conditions for all 

time-dependent variables results in the following ex-

pressions:  

 
2 2

2 2 2 2

1 2

[(s j ) 2 k (s j ) k ]A (s)

A [s jg ] (s).

       

   
 (10) 
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Solution of the algebraic equation (10) for the sec-

ondary amplitude-phase Laplace transform is 

 1 2
2 2 2

2 2 2

A (s jg )
A

(s j ) 2 k (s j ) k

  
 

      
.   (11) 

Considering the angular rate as an input, the sys-

tem transfer function for the secondary amplitude-phase 

is  

 

2
2

1 2

2 2
2 2 2

10 2

2 2
2 2 2

2 2
1 1 1

A (s)
W (s)

(s)

A (s jg )

(s j ) 2 k (s j ) k

q (s jg )

[(s j ) 2 k (s j ) k ]

1
.

[k 2j k ]

 


 
 

      

 
 

      


   

 (12) 

One should note that transfer function (12) has 

complex coefficients, which results in the complex sys-

tem outputs as well. Although it is somewhat unusual, it 

still enables us to analyse CVG dynamics and transient 

processes due to the angular rate in an open-loop dy-

namic system. 

Amplitude and phase responses. In order to cal-

culate the amplitude response of the system using trans-

fer function (12), Laplace variable s must be replaced 

with the Fourier variable j , where   is the frequency 

of the angular rate oscillations: 

  

2

10 2

2 2
2 2 2

2 2
1 1 1

W (j )

jq ( g )

[k ( ) 2 j k ( )]

1
.

[k 2j k ]

 

  
 

      


  

 (13) 

Absolute value of the complex function (13) is 

the amplitude response of the secondary oscillations 

amplitude to the harmonic angular rate, and the cor-

responding phase of the complex function is the 

phase response [5]: 

10 2

1

2 2 2 2 2 2 2
2 2 2

1

2 2 2 2 2 2 2
1 1 1

A( )

q ( g )

[(k ( ) ) 4 k ( ) ]

1
;

[(k ) 4 k ]

 

  
 

      



   

 

 

1 1 2 2 2 2
2 1

1
1 2 1 2

( ) tan { [k ( ) ][k ]

4k k ( );

 



        

     
  (14) 

2 2
2 2 1

2 2
1 1 2

2[k ( )(k )

k (k ( ) )].

      

     
 

One should note that, assuming constant angular 

rate ( 0  ) in the expressions (12) the well known 

expressions ([4]) for the amplitude and phase of the 

secondary oscillations is obtained.  

Analysis of the expressions (12) shows that effect 

from the oscillating angular rate is practically equivalent 

to shift of the excitation frequency by the frequency of 

the angular rate. This causes CVGs, especially those 

with high Q-factor, to loose its resonant tuning, which 

in turn results in significant variation of its scale factor 

(dynamic error). Solution of this problem by means of 

proper choice of natural frequency split and damping 

has been suggested in [6]. 

System poles and stability. Both stability and 

unit-step transient process quality depend on position of 

the system poles in the real-imaginary plane. Poles of 

the transfer function (12) are as follows: 

 2
1,2 2 2 2 2s k jk 1 j       .   (15) 

Analysing expressions (15), it is easy to see that 

CVGs are inherently stable.  

Indeed, if the relative damping coefficient 2 1  , 

then real parts of the poles are  

2 2k 0   .  

If the relative damping coefficient 2 1  , then 

real parts are  

2
2 2 1k ( 1) 0      . 

Ideal (half-oscillatory) unit-step angular rate tran-

sient process in secondary oscillations amplitude is 

achievable if imaginary parts of the poles (15) are zero.  

One pole has large imaginary part  

2
2 2k 1 0   ,  

which is always way below zero, and corresponds to 

high frequency oscillations in the envelope. 

The second pole is responsible for the low fre-

quency oscillations, and is the most essential for the 

transient process.  

Case of slowly varying amplitudes. Another con-

sequence of the presented above analysis of the system 

poles is that actual amplitude of the secondary oscilla-

tions is mainly defined by the low frequency pole, while 

effect from the high frequency pole can be neglected, 

since it will be removed during demodulation process. 

In other words, predominant behaviour is a slow varia-

tion of the amplitude and phase. Neglecting the second 

order derivative in the equation (9) yields 

2 2
2 2 2 2 2 2 2

2 1

2( k j )A (k 2j k )A

( j g )A ,

        

  




 

and the corresponding angular rate transfer function 

becomes 
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2

10 2

2 2
2 2 2 2 2

2 2
1 1 1

W

q (s jg )

[2 k s k j2 ( k s)]

1
.

[k 2j k ]



 
 

      


   

   (16) 

Complex transfer function (16) is simpler in com-

parison to the function (12) and could replace it in cer-

tain specific problems when slow oscillations analysis is 

required.  

Real and imaginary transfer functions. While 

simulating dynamics of CVG based on the complex 

amplitude-phase transfer functions (12) or (16) one 

could have problems dealing with complex coefficients 

of these transfer functions.  

One way to avoid this problem is to consider real 

and imaginary parts of complex amplitude as separate 

signals, which are then combined together to produce 

real amplitude and phase.  

In order to obtain transfer functions for such 

signals let us represent primary and secondary ampli-

tudes as: 

 1 1R 1IA A jA  ; 2 2R 2IA A jA  .    (17) 

Primary oscillations components can be easily 

found by means of substituting expressions (17) into 

formula (8) thus yielding 

 

2 2
10 1

1R 2 2 2 2 2 2
1 1 1

10 1 1
1I 2 2 2 2 2 2

1 1 1

q (k )
A ;

(k ) 4k

2q j k
A .

(k ) 4k




   

 
 

   

     (18) 

At the same time, substituting expressions (18) 

into the motion equation (9), and applying Laplace 

transformation with zero initial conditions gives 

 

2 2 2
2 2 2 2R

2 2 2I

1R 1I 2

2 2 2
2 2 2 2I

2 2 2R

1I 1R 2

(k 2k s s )A (s)

2 (k s)A (s)

(A s A g ) (s);

(k 2k s s )A (s)

2 (k s)A (s)

(A s A g ) (s).

     

    
   


    

    
   

      (19) 

Resolving algebraic system (19) with respect to 

unknown real and imaginary parts of the secondary 

complex amplitude results in 

 

1R RR 1I RI
2R

1R IR 1I II
2I

A M (s) A M (s)
A (s) (s);

P(s)

A M (s) A M (s)
A (s) (s).

P(s)


 


 

  (20) 

Here the numerator polynomials from the real and 

imaginary parts of primary amplitudes are given by the 

following expressions:  

RR

2 2 2
2 2 2 2 2 2

M (s)

s(k 2k s s ) (s 2g (s k ));



       
 

RI

2 2 2
2 2 2 2 2 2

M (s)

[2s(s k ) g (k 2k s s )];



        
 

 
II

2 2 2 2
2 2 2 2 2 2

M (s)

2 g (s k ) s(k 2k s s )];



        
  (21) 

IR

2 2 2
2 2 2 2 2 2

M (s)

[g (k 2k s s ) 2s(s k )];



        
 

2 2 2 2 2 2
2 2 2 2 2

P(s)

4(s k ) (k 2k s s ) .



        
 

Obtained expressions (18), (20), and (21) allow 

analysis of CVG dynamics in control system without 

necessity to involve complex-valued signals. 

Simplified transfer function and its accuracy. 

There is quite an important special case, when complex 

transfer functions transform to the simple real-valued 

one. Assuming equal primary and secondary natural 

frequencies ( 1 2k k k  ), equal damping ratios 

( 1 2     ), resonance excitation ( k ), and con-

stant angular rate, one can easily obtain 

 

2 2
20 2R 2I

10 2

2

A (s) A (s) A (s)

q g
(s).

4k (s k )

  

 
  

 (22) 

In this case, secondary amplitude (22) is related to 

the input angular rate by means of the following transfer 

function: 

 20 10 2
20 2

A (s) q g
W (s)

(s) 4k (s k )
 

   
.   (23) 

As one can see, the simplified CVG transfer func-

tion (23) describes a simple first-order system with ex-

ponential transient process. Needless to say, that possi-

bility to use function (23) for “non-tuned” CVG as well 

is highly desired. Therefore let us evaluate accuracy of 

the function (23) in representing general case of CVG 

dynamics. In order to do that, let us compare transient 

processes produced by the simplified transfer function 

and by a numerical solution of the equations (1) with 

subsequent demodulation. As a performance criterion 

the following integral function is used: 

 

T
* 2

20 20

0

J( k, ) [A (t) A (t)] dt    .   (24) 

Here 2 1k k / k   is the ratio of the natural fre-

quencies, 2 1/     is the ratio of the relative damp-

ing ratios, *
20A (t)  is the demodulated secondary ampli-

tude produced by the “realistic” model. 
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Graphic plot of the functional (24) is shown below 

in the fig. 2.  

 

 
Fig. 2. Integral error of transient  

process representation 

 

In this figure darker colours correspond to the zero 

error of the transient process representation. Here the 

central dark spot corresponds to the perfectly tuned de-

vice.  

One can see, that wide range of sensitive elements 

with varying ratio of the natural frequencies and ratio of 

relative damping still could be represented by the trans-

fer function (23) with acceptably low integral error. 

Conclusions 

Presented above analysis of CVG dynamics using 

amplitude-phase complex variables resulted in obtaining 

system transfer functions, where measured angular rate 

became an input rather than a parameter. This makes 

possible to analyse amplitude and phase responses of 

CVG, its transient processes in already demodulated 

signals, optimise transient process characteristics. Ex-

cellent performance of the obtained simplified transfer 

functions has been demonstrated using numerical analy-

sis of the integral error analysis.  
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ДИНАМІКА КОРІОЛІСОВИХ ВІБРАЦІЙНИХ ГІРОСКОПІВ  

В СИСТЕМАХ КЕРУВАННЯ 

В.О. Апостолюк 

В цій статті запропоновано аналіз динаміки чутливого елемента коріолісових вібраційних гіроскопів в амплітуд-

но-фазових змінних, що веде до виведення коректної передатної функції таких інерціальних датчиків. Отримана пере-

датна функція проаналізована та спрощена для декількох важливих часткових випадків. Також було проаналізовано 

якість спрощеної передатної функції порівняно із точною чисельною моделлю. Отримана передатна функція дозволяє 

вивчення коріолісових вібраційних гіроскопів як елементів систем керування. 

Ключові слова: коріолісовий вібраційний гіроскоп, динаміка, контрольні системи. 

 

ДИНАМИКА КОРИОЛИСОВЫХ ВИБРАЦИОННЫХ ГИРОСКОПОВ  

В СИСТЕМАХ УПРАВЛЕНИЯ 

В.А. Апостолюк 

В этой статье предложен анализ динамики чувствительного элемента кориолисовых вибрационных гироскопов в 

амплитудно-фазовых переменных, который позволяет получить корректную передаточную функцию таких инерциаль-

ных датчиков. Полученная передаточная функция проанализирована и упрощена для нескольких важных частных слу-

чаев. Также было проанализировано качество упрощенной передаточной функции по сравнению с точной численной 

моделью. Полученная передаточная функция позволяет изучать кориолисовы вибрационные гироскопы как элементы 

систем управления. 

Ключевые слова: кориолисовый вибрационный гироскоп, динамика, контрольные системы. 


