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Introduction

Vibratory gyroscopes utilizing Coriolis effect were successfully used in
vast amount of different applications since micro fabrication techniques made
possible to reduce its cost in mass production along with significant reduction in
size [1, 2]. At the same time, Coriolis vibratory gyroscopes (CVQ) traditionally
occupy niche of low accuracy sensors due to the low stability of its
performances under influence of the operational environment. One of the major
sources of such instabilities is temperature variations that cause changes in all
measurement characteristics of CVGs [3, 4]. In this paper we study the effect of
temperature variations on the CVG with cylindrical sensitive element, develop
empirical model of the temperature influences, identify its parameters, and
develop model of angular rate measurement error due to the temperature
variations. Later we validate obtained models using experimental data.

Temperature related zero-rate output problem

Significant temperature related zero-rate output has been observed during
experimental tests of CVG. For the temperature profile, shown in Fig. 1, and
zero angular rate, CVG output is shown in Fig. 2 (uncompensated).
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Fig. 1. Temperature profile
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It is believed that temperature variations cause this bias through the
temperature dependent cross-damping. In this case excited primary oscillations
of the sensitive element will induce secondary (output) oscillations even without
external rotation being applied to the sensor.
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Fig. 2. CVG output with and without temperature compensation

In order to develop mathematical model for this phenomenon let us first
analyse how cross-damping affects dynamics of the CVG sensitive element.

Sensitive element motion equations

In the most generalized form, motion equations of the CVG sensitive
element both with translational and rotational motion could be represented in the
following form [5]:

{Xl + 20k, + (K —d Q)x, + gk, +dsQxx, = ¢, (¢), ()
iy + 28,k 1y + (k3 —dyQ%)x, — g,k —Qxy = ¢, (1)

Here x, and x, are the generalized coordinates that describe primary (excited)
and secondary (sensed) motions of the sensitive element respectively, &, and &,

are the corresponding natural frequencies, {, and (, are the dimensionless

relative damping coefficients, Q 1is the measured angular rate, which is
orthogonal to the axes of primary and secondary motions, g, and ¢, are the

generalized accelerations due to the external forces acting on the sensitive
element. The remaining dimensionless coefficients are different for the sensitive
elements exploiting either translational or rotational motion. For the vibrating
cylinder sensitive element, for example, d, =d, =1, d, =1, g, =2, g,=2. For
other sensitive elements designs expressions for these coefficients can be found
in [5].
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If cross damping is present in the system, the motion equations (1) are
transformed to the following form

{xl + 20k, + (K —d Q)x, + (g, Q2+ 28,5,k %, +d3Qx, = (1),
iy +20,ky %, + (ky —dyQ%)x, — (2,92 + 28,k —Qx, = g, (¢)
Here ¢, and ¢,, are the relative cross-damping coefficients. Constant

cross-coupling through the damping can be removed by calibration. However,
calibration is unable to deal effectively with the varying in time damping due to
the temperature variations.

Let us now analyse cross-damping related components in the amplitude of
the secondary oscillations. Transforming equations (2) using amplitude-phase
complex variables similarly to what has been demonstrated in [6], the following

first-order equation for the slowly varying amplitudes (4, ~ 0) can be produced:
Here A, is the constant (does not depend on time) complex amplitude of the

)

primary oscillations

A _ qu
l_kz 2 . ’
[0 +2jkCo

and complex amplitudes A are expressed in terms of the real amplitudes and
phases as A4 (¢)= 4,(t)e’"”, where i equals 1 or 2 for the primary or secondary
oscillations correspondingly. One should also note that disturbances in primary
oscillations caused by secondary are considered negligible comparing to the
forces from the excitation system.
Applying Laplace transformation to both sides of the equation (3), and
solving obtained algebraic equation for the secondary amplitude, results in
A, (5) = Alls + jg.0Q(s) + 2ok Go ()] @
k} — o’ +2jok,C, +2s(k,C, + jo)
Solution (4) can be represented as a sum of the following two components:
A (s) =47 (s) + 4 (s),

A5y =— A0 T) )
(s + o) +20k,(s + jo) + K 5)
A(s) = 24, jok, £ ().

(s+ jo)’ +2C,k,(s + jo)+k;
Here A’ (s) is part of the secondary amplitude due to the input angular rate, and
A;(s) is due to the cross-damping. Corresponding to (5) transfer functions are
hence defined as
A (5) =W, (s) - Qs) + W (5)- C o (),
WE(s) = q,,(Jog, +5) , (6)
[(s + jo)* +2C,k, (s + jo)+ k; (k) — o + 2 jk,C,®)
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2 jok,
[(s + jo)* +28,k, (s + jo) + £ 1k — 0 +2jkC @)
It is important to remember that part of the secondary amplitude due to the
cross-damping will be undistinguishable from the one caused by the angular

rate. Let us therefore derive transfer function relating input cross-damping to the
output angular rate as

Wy (s)=

Q° (s) =W (5)-C,,(5), (7)
where Q°(s) is the measured erroneous angular rate caused by the cross-
damping. Quite apparently unknown transfer function W (s) can be expressed
using transfer functions from (6) as

ch (S) _ 2k2 (k22 - + 2jk2®€2) (8)
Wzg(s - 0) gz(kz2 -0’ + 2k2§2S + 2jO)(S + kzc.:z)) .
Transfer function (8) can be further simplified using assumptions that are
relevant to CVGs with cylindrical sensitive element, and are good

approximations for other sensitive elements designs (see [6]). Namely, we can
assume that natural frequencies are equal (k, =k, =k) as well as relative

W (s)=

damping coefficients ({, =C,=C), and primary oscillations excitation

frequency is ®=k+1-2C*. With these assumptions transfer function (8)
becomes
2k°C
g, (s +kC)
Transfer function (9) allows efficient analysis of errors due to the cross-

damping, which not only is present in the system, but can vary due to the
different reasons.

W (s) =

Empirical modelling of cross-damping

Assuming that the cross-damping coefficient is a function of the
temperature shift 7 from the calibration temperature, it can be approximated
using polynomial as

G =Cn(T) = 2@? T’ (10)

Temperature related coefficients (| can be determined experimentally

when ambient temperature is known (measured) and angular rate is absent (see
Figures 1 and 2). However, in most of the cases we observe angular rate as the
gyro output. In order to relate angular rate to the input cross damping, let us use
steady state of the transfer function (9) as

QT) = Wi(s > 0T ~ 23T =3l (1)

87 i=0
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Parameters Q! of the cross-damping model (11) can now be identified
from the experimental data and found to have the following values:
Qf =1.0792-10°, Qf =-4.631-107, Q} =7.7044-107, Q] =-5.8598-107.
Influence of the higher order components found to be negligible. In order to
validate cross-damping model (11), obtained temperature related angular rate
can be subtracted from the gyroscope output, producing compensated output as
shown in Fig. 2 (compensated line). As one can see, model (11) successfully
compensates bias for the steady temperature, while performs only fair during
temperature transitions.

Temperature compensation system

In order to deal successfully with transient processes in CVG dynamics due
to the temperature, let us synthesise temperature compensation system using
cross-coupling compensation technique described in [7]. Structure of a simple
partial decoupling system is shown in Fig. 3.

______________________________________

CVG sensitive element

oal E i X1
i Wi(s) : >
Cx(s) J SRR
| e o
i i I X2
Z Wa(s) ; »X)—>
g2 :

Fig. 3. CVG with the partial decoupling system

Here transfer functions W,(s), W,(s), C,(s), and C,(s) define dynamics
of the CVG sensitive element with respect to cross-damping as

|
W(s)= ,
() s +2C ks +k/
1
W (s)= ,
2(5) s+ 2Ck,s +k; (12)

C(s) = (g1 Q2 +2C,k,)s,
C,(s) =(g,Q2+ 28,k )s,
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and transfer function G, (s) represents decoupling system and is given by
201,k . (13)

s* + 28, ks + k;

Here C,, is the temperature dependent cross-damping coefficient given by (10).

By taking temperature measurements from the temperature sensor one can now
combine these readings with the measured primary oscillations to implement
low level (before demodulation) temperature compensation as shown below in
Figure 4.

G,(s)=

q1 .
—> I >
CVG sensitive element d/dt
X2
_> ;
q>2
v
Temperature %
Sensor & Model - > Was)

Fig. 4. Low-level temperature compensation system

Results of realistic numerical simulations of this system operation are
shown in Figure 5.
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Fig. 5. Temperature compensation system simulation
(dashed line — input angular rate, thin line — uncompensated output,

thick line — compensated output)
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In these numerical simulations temperature has sinusoidal shape ranging
from -50 to 50 degrees Celsius and period of 1 s. One can see, that proposed
temperature compensation system successfully removed effect of cross-damping
variations due to the temperature.

Resume

Developed in this paper model of temperature related errors in CVGs
along with the empirical model of the cross-damping have been used to develop
low-level temperature error compensation system, which significantly improved
undesired influence of the temperature dependent cross-damping. However,
proposed system still requires temperature sensor being used in the system. In
our future research we plan to use model of cross-damping errors to develop
stochastic system of temperature errors compensation that will not require
temperature measurements.
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TEMPERATURE ERRORS COMPENSATION IN CORIOLIS
VIBRATORY GYROSCOPES

The effect of temperature variations on the output of Coriolis vibratory
gyroscope via cross-damping is studied in this paper. Mathematical model of the
temperature influences is developed and its parameters are identified using
experimental data. Low-level temperature error compensation system is
proposed and evaluated by means of realistic numerical simulations.

Keywords: Coriolis vibratory gyroscope, temperature errors, Cross-
damping compensation.

B. Anocromok, B. UukoBanu

KOMIIEHCAIIUSI TEMIIEPATYPHBIX IIOT'PEIITHOCTEN B
KOPHOJIMCOBBIX BUBPAIIMOHHBIX 'MPOCKOITAX

B nanHoli pabGore wu3ydaeTcs BIUSHHE H3MEHECHHM TemmepaTypbl Ha
BBIXOJIHBIX CHUTHAJIbl KOPUOJUCOBBIX BHOPAlIMOHHBIX THUPOCOKONB uepes3
nepekpectHoe  aemmdupoBanue. Paspaborana wMaTemaTHYecKas MOJENb
TEeMITepaTypPHBIX BO3JICUCTBHI, MapaMeTphbl KOTOPOH OBLIN HICHTU(DHUIIMPOBAHBI
C MCIIOJIb30BaHUEM AKCIIEPUMEHTAIBHBIX JAHHBIX. [Ipensioxena
HU3KOYPOBHEBAs CHUCTEMA KOMIICHCAMM TEMIIEPATYPHBIX IOTPEIIHOCTEMN,
pabota KOTOpoil Oblla TMPOBEPEHY MYyTEM PEATUCTUYHOIO UHCICHHOTO
MOJETUPOBAHUSI.

KiroueBble  c¢jioBa:  KOPUOJIMCOBBI  BUOpALMOHHBIM  THPOCKOIL,
TEeMIIepaTypHbIE MOTPEIIHOCTH, KOMIIECAIUs IEPEKPECTHOTO AeMII(PUPOBAHUS

B. Anocromok, B. UikoBaHi

KOMIEHCANIA TEMIIEPATYPHUX HOXUBOK Y KOPIOJIICOBHUX
BIBPAINIMHUX I'TPOCKOITAX

B naniit po60Ti BUBYA€THCA BILTUB 3MIH TEMIIEPATypU HA BUXI1JIHI CUTHAIN
KOPIOJTICOBUX BIOpaliMHUX TIPOCKOIIB Yepe3 IepexpecHe AemrQipyBaHHS.
Po3pobneno mMatemaTHuHy MOJENb TEMIIEpaTYpHHUX BIUIUBIB, MMapaMeTpu SKOi
Oyno 1AeHTU(]IKOBAaHO 3 BUKOPHUCTAHHSM EKCIEPUMEHTAIbHUX JIAHUX.
3anpornoHOBaHO  HU3BKOPIBHEBY CHCTEMY KOMIIEHCAIlll TEMIEpaTypHUX
MOXuOOK, POOOTy sAKOi OyJ0 NEpPeBIpeHO 3a JOMOMOIOK PealiCTUYHOTO
YHCELHOTO MOJCITIOBAHHS.

KarwuoBi cioBa: kopionicoBuil BiOpalliifHUX TIPOCKOII, TeMIIepaTypHi
MOXHOKHU, KOMIICHCALlIsl IEPEeXPEeCHOro aeMrdipyBaHHS



