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 Introduction 
  
 Generalized dynamics of Coriolis vibratory gyroscopes (CVGs) has been 
under intensive study for last two decades. Such an increased interest has been 
partially caused by the possibility to fabricate sensitive elements for such 
gyroscopes using microelectronic mass-production technologies. As a result, 
new family of MEMS inertial sensors appeared. 
 Mathematical modelling of the sensitive element took considerable part 
among other directions of CVG research. Analysis of the sensitive element 
dynamics in terms of the inertial element displacement is quite complicated [1]. 
Some useful results were obtained by applying method of averaging to the 
single-mass system with two degrees of freedom [2]. Later dynamics of the 
translational sensitive element has been analysed in more generalized form for 
designs involving additional decoupling frame [3, 4]. Finally combined general 
model for CVGs both with translational and rotational motion of the sensitive 
element has been devised in [5], including analytical design methodology for the 
sensitive element. At the same time, generalized analysis of the CVG as an 
element of  control system although been attempted in [4] yet was inefficient 
due to the fact that unknown angular rate is a coefficient in the motion equations 
rather than input to the oscillator.  
 Approximate dynamic error analysis with application to the bandwidth 
realization in terms of the generalized CVG model has been suggested in [5]. 
Main goal of this paper is to present new methodology for the CVG dynamic 
errors analysis and recommendation for the sensor bandwidth optimization. 
 
  Problem formulation 
  
 In the most generalized form, motion equations of the CVG sensitive 
element both with translational and rotational motion could be represented in the 
following form: 
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Here 1x  and 2x  are the generalized coordinates that describe primary (excited) 

and secondary (sensed) motions of the sensitive element respectively [5], 1k  and 

2k  are the corresponding natural frequencies, 1  and 2  are the dimensionless 
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relative damping coefficients,   is the measured angular rate, which is 
orthogonal to the axes of primary and secondary motions, 1q  and 2q  are the 

generalized accelerations due to the external forces acting on the sensitive 
element. The remaining dimensionless coefficients are different for the sensitive 
elements exploiting either translational or rotational motion. They can be 
calculated using expressions given in the table 1, were 1m  and 2m  are the 

masses of the outer frame and internal massive element in case of translational 
motion, and corresponding moments of inertial for the rotational motion (for 
greater details see [5]). 
 
 Table 1. Dimensionless parameters of the CVG dynamics 

 Translational Rotational 

1d  1    211122122312 IIIIII   

2d  1   222123 III   

3d   212 mmm      21112321 IIII   

1g   2122 mmm      2111232122 IIIII   

2g  2   22232122 IIII   

 
In the presented above motion equations the angular rate is included as an 
unknown and variable coefficient rather than an input to the double oscillator 
system. In order to identify the angular rate one must detect secondary 
oscillations of the sensitive element and measure its amplitude, which is 
approximately directly proportional to the angular rate, and phase, which gives 
the sign.  
 In order to make the equations (1) suitable for to the dynamic error 
analysis we must make the following assumptions: angular rate is small 
comparing to the primary and secondary natural frequencies so that  

 2
1

2
1  dk , 2

2
2
2  dk  (2) 

and rotational and Coriolis accelerations are negligible comparing to the 
accelerations from driving forces 

   tqxdxg 12321   . (3) 

Taking into considerations assumptions (2) and (3), motions equations (1) could 
be simplified as follows: 
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Here we also assumed that no external driving forces are affecting the secondary 
oscillations, which means that   02 tq . System of equations (4) is now 

perfectly suitable for further transformations towards the desired representation 
in terms of the unknown angular rate. 
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 Motion equations in amplitude-phase variables 
  
 As has been shown in [6], by means of a proper chosen phase shift of the 
excitation voltage applied to the sensitive element, the excitation force could be 
shaped to the perfect harmonic form. Using exponential representation of 
complex numbers, such a driving force  tq1  could be represented as 

  }Im{)sin( 10101
tjeqtqtq  . (5) 

Here   is the excitation frequency given in radians per second, 10q  is the 

constant excitation acceleration amplitude. Non-homogeneous solutions of the 
motion equations (1) or (4) for primary and secondary oscillations are searched 
in a similar form 
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where 10A  and 20A  are the primary and secondary oscillation amplitudes, 10  

and 20  are the corresponding phase shifts relatively to the excitation force. 

Although these quantities are real, they are combined in complex amplitude-
phase variables 1A  and 2A . 

 Substituting expressions (5) and (6) into equations (4) results in the 
following motions equations in terms of the complex amplitude-phase variables 
rather than real generalized coordinates: 
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Equations (7) describe variations of the amplitude and phase of the primary and 
secondary equations in time with respect to the unknown non-constant angular 
rate )(t . This allows conducting analysis of the Coriolis vibratory gyroscope 

dynamics without constraining the angular rate to be constant or slowly varying. 
 
 System transfer functions 
  
 Having CVG sensitive element motion equations in the form (7) allows 
analysis of its transient processes in amplitudes and phases with respect to 
arbitrary angular rates affecting the system. However, in order to analyse the 
system dynamic error we need its amplitude response from the angular rate. In 
order to obtain the amplitude response the system transfer functions must be 
obtained. Application of the Laplace transformation to the equations (7) with 
respect to zero initial conditions for all time-dependent variables results in the 
following expressions:  
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Solutions of the algebraic system (8) for the primary and secondary amplitude-
phase Laplace transforms are given as 

2
111

2
10

1
)(2)(

)(
kjskjs

q
sA


 , 

])(2)][()(2)[(

)(][
)(

2
111

22
222

2
210

2
kjskjskjskjs

sjgsq
sA




 . 

(9) 

Considering the angular rate as an input, the system transfer function for the 
secondary amplitude-phase is  

])(2)][()(2)[(

)(
)(

2
111

22
222

2
210

2
kjskjskjskjs

jgsq
sW




 . (10) 

One should note that the transfer function (10) has complex coefficients that 
results in the complex system output as well. Although it is somewhat unusual, 
it still enables us to calculate amplitude response of the CVG due to the 
harmonic angular rate. Apart from that, transfer function itself allows further 
study of the Coriolis vibratory gyroscopes as an open-loop dynamic system. 
 
 Amplitude and phase responses 
  
 In order to calculate the amplitude response of the system using transfer 
function (10), Laplace variable s must be replaced with the Fourier variable j , 

where   is the frequency of the angular rate oscillations: 
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Here the new variables are given by the following expressions: 

1kk  , 12 / kkk  , 1/ k , 1 , 12 /  .  

Similarly, by introducing the dimensionless relative frequency of the angular 
rate as 1/ k , expression (11) can be simplified: 
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Absolute value of the complex function (12) is the amplitude response of the 
secondary oscillations amplitude to the harmonic angular rate, and the 
corresponding phase of the complex function is the phase response: 
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One should note that, assuming constant angular rate ( 0 ) in the expressions 
(13) the well known expressions ([5]) for the amplitude and phase of the 
secondary oscillations could be obtained.  
 
 Dynamic errors analysis 
  
 Dynamic error of the CVG can by analysed in terms of the amplitude 
distortions due to the angular rate frequency as well as in terms of the 
corresponding distortions of the phase. In an ideal case, amplitude and phase of 
the secondary oscillations for the harmonic angular rate must by the same as for 
the constant one. This allows defining the dynamic error both for the amplitude 
and phasing as follows: 
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Errors (14) are dimensionless and are equal to 1 in the ideal case.  
 Let us first study the phase dynamic error. Except of the relative angular 
rate frequency, phase dynamic error depends on such design parameters of the 
sensitive element as relative excitation frequency , natural frequency ratio 

k , relative damping ratio  , and damping factor of the primary oscillations 

 . As has been shown in [1], it is advantageous to excite the sensitive element at 

the natural frequency of primary oscillations ( 1 ). In this case graphic plot 
of the phase dynamic error for different primary damping factors is shown in the 
figure 1. 
 Analysis of this graph suggests that although it appears that the best case 
is the absence of damping at all, the presence of even a small amount of 
damping significantly increases the phase dynamic error. At the same time, 
increasing the damping causes the error to approach the ideal case.  
 Let us now study the amplitude dynamic error. Substituting the amplitude 
(13) into the (14) gives the expression for the amplitude dynamic error: 
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Note that amplitude dynamic error, given by (15), doesn’t explicitly depend on 
the primary natural frequency. Maximisation of the CVG sensitivity requires 

small natural frequency of the primary oscillations, due to the 3k  term in the 
denominator of the amplitude (13). Providing the necessary bandwidth of the 
sensor requires keeping the amplitude dynamic as low as possible (namely 1) 
within that bandwidth.  
 Graphic plot of the amplitude dynamic error as function of the primary 
oscillations damping coefficient  and relative frequency of the angular rate is 

shown in the figure 2. From this graph one could see, that decreased damping 
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results in significant dynamic error even for the small frequencies of the angular 
rate. On the other hand, increased damping causes the drop between peaks to 
diminish, thus providing low values for the dynamic error.  
 

0.00 0.05 0.10 0.15 0.20

1.0

0.5

0.0

0.5

1.0



E


 
Fig. 1. Phase dynamic error 

(solid line - 02.0 , dashed line - 0 , 1.1k , 1 , 1 ) 

 

 
Fig. 2. Amplitude dynamic error 

( 1.1k , 1 , 1 ) 

 
 Amplitude dynamic error has two maximums and one local minimum 
along the rate frequency axis that are clearly visible on the figure 2, especially in 
the case of low damping. Positions of these extremums can be found from the 
following equation: 
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General solution of the equation (16) is quite difficult to analyse. However, in 
case of zero damping it can be significantly simplified and its solutions could be 
found from the following equation: 

0]1)][()(][)(21)[( 22222  kk . (17) 

Three positive roots of the equation (17) are  
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Here the first and the last roots correspond to maximums, and the second one to 
the minimum. 
 In general terms, optimization of the bandwidth means providing the same 
zero level of the amplitude dynamic error at each of three extremums in vicinity 
of the given by (18) frequencies of the angular rate. Amplitude dynamic error 
level at the second maximum, which corresponds to 3 , can be controlled by 

the damping ratio   if it is a root of the following equation: 
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Positive solution of the equation (19) assuming 1  is  
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Now let us find the damping   that satisfies the equation 

1)( 2 AE , (21) 

where   is given by the expression (20). In this case equation (21) will include 

only depend on natural frequencies ratio and unknown damping  . Full 

expression for the equation (21) is quite large to be shown here, however it 
could be easily solved numerically. Graphic plot of the amplitude dynamic error 
as a function of damping   and with respect to the optimal damping ratio (20) is 

shown in the figure 3. 
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Fig. 3. Minimal dynamic error damping 

(solid line - 05.1k , dashed line - 1.1k ) 
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For example, optimal damping parameters for 05.1k , are 018.0 , 

921.0 . Amplitude dynamic error for this case is shown in the figure 4. 
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Fig. 4. Optimized amplitude dynamic error 

 
One should also note that achieved level of the amplitude dynamic error could 
further improved if the objective level of the dynamic error in equations (19) 
and (21) is set to e1  instead of 1, where e  is the acceptable value of the 
dynamic error. 
 
 Bandwidth realization 
  
 Based on the presented above analysis of the dynamics errors of the 
CVGs, necessary bandwidth can be achieved by means of proper choice not 
only of the natural frequencies ratio, as was suggested in [5], but by providing 
proper damping of the primary and secondary oscillations as well. 
 In order to provide necessary bandwidth, natural frequencies ratio could 
be chosen based on the position of the second maximum in the amplitude 
response: 

 k . (22) 

Here   is the required bandwidth in the dimensionless form, related to the 

natural frequency of primary oscillations. After the natural frequency ratio is 
calculated using (22), the result is used to calculate necessary damping for the 
primary oscillations. The latter problem can be solved either numerically or even 
analytically for some simplified cases. Having now calculated proper frequency 
ratio and primary damping, corresponding secondary damping is calculated 
using the ratio (20).  
 Considering the fact, that providing necessary damping in the CVGs is not 
an easy task, optimal values can be implemented using closed-loop operation 
both for the primary and secondary oscillations. 
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 Conclusions 
  
 From the presented above study of dynamics errors of the Coriolis 
vibratory gyroscopes the following conclusions can be made: 
 Using amplitude-phase variables instead of generalized coordinates allows 

obtaining proper transfer functions, where input is the measured angular 
rate, rather than actuation. 

 Using suggested above procedure, CVG bandwidth can be realized more 
efficiently by tuning not only the frequency ratio, but damping as well. 

 Further study is required to devise algorithms for the closed-loop 
operation in order to ensure damping optimal in terms of bandwidth realization. 
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V. A. Apostolyuk 
DYNAMIC ERRORS OF CORIOLIS VIBRATORY GYROSCOPES 
 
Analysis of the Coriolis vibratory gyroscopes sensitive element dynamics in 
terms of the amplitude-phase variables leading to the proper transfer functions 
of such inertial sensors is proposed in this paper. Obtained transfer function is 
used to derive expressions for the amplitude and phase response of such sensors, 
which in turn allows proper analysis of its dynamic errors. Based on the 
dynamic errors analysis, bandwidth realization method for Coriolis vibratory 
gyroscopes is presented as well. 
 
В. О. Апостолюк 
ДИНАМІЧНІ ПОХИБКИ КОРІОЛІСОВИХ ВІБРАЦІЙНИХ 
ГІРОСКОПІВ 
 
В цій статті представлено аналіз динаміки чутливого елемента 
Коріолісових вібраційних гіроскопів в амплітудно-фазових змінних, що 
веде до виведення корректної передатної функції таких інерціальних 
датчиків. Отримана передатна функція використана для виведення виразів 
для амплітудно- та фазо-частотних характеристик датчиків, що в свою 
чергу дозволили виконати аналіз їх динамічних похибок. На основі 
представленого аналізу динамічних похибок було отримано метод 
забезпечення полоси пропускання для Коріолісових вібраційних 
гіроскопів. 
 
В. А. Апостолюк 
ДИНАМИЧЕСКИЕ ПОГРЕШНОСТИ КОРИОЛИСОВЫХ 
ВИБРАЦИОННЫХ ГИРОСКОПОВ 
 
В этой статье представлен анализ динамики чувствительного элемента 
Кориолисовых вибрационных гироскопов в амплитудно-фазовых 
переменных, который позволяет получить корректную передаточную 
функцию таких инерциальных датчиков. Полученная передаточная 
функция использована для получения выражений для амплитудно- и фазо-
частотных характеристик датчиков, что в свою очередь позволило 
выполнить анализ их динамических погрешностей. На основе 
представленного анализа динамических погрешностей был получен метод 
обеспечения полосы пропускания для Кориолисовых вибрационных 
гироскопов. 
 


