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DYNAMIC ERRORS OF CORIOLIS VIBRATORY GYROSCOPES

Introduction

Generalized dynamics of Coriolis vibratory gyroscopes (CVGs) has been
under intensive study for last two decades. Such an increased interest has been
partially caused by the possibility to fabricate sensitive elements for such
gyroscopes using microelectronic mass-production technologies. As a result,
new family of MEMS inertial sensors appeared.

Mathematical modelling of the sensitive element took considerable part
among other directions of CVG research. Analysis of the sensitive element
dynamics in terms of the inertial element displacement is quite complicated [1].
Some useful results were obtained by applying method of averaging to the
single-mass system with two degrees of freedom [2]. Later dynamics of the
translational sensitive element has been analysed in more generalized form for
designs involving additional decoupling frame [3, 4]. Finally combined general
model for CVGs both with translational and rotational motion of the sensitive
element has been devised in [5], including analytical design methodology for the
sensitive element. At the same time, generalized analysis of the CVG as an
element of control system although been attempted in [4] yet was inefficient
due to the fact that unknown angular rate is a coefficient in the motion equations
rather than input to the oscillator.

Approximate dynamic error analysis with application to the bandwidth
realization in terms of the generalized CVG model has been suggested in [5].
Main goal of this paper is to present new methodology for the CVG dynamic
errors analysis and recommendation for the sensor bandwidth optimization.

Problem formulation

In the most generalized form, motion equations of the CVG sensitive
element both with translational and rotational motion could be represented in the
following form:

{5@1 + 20,k %y + (kf —d\Q%)x, + g, Q% +d; Q) = %(t)»
iy + 205k, %, + (ky —d, Q%) x, — g, Q) — Q= %(t)-
Here x, and x, are the generalized coordinates that describe primary (excited)

(D

and secondary (sensed) motions of the sensitive element respectively [5], &k, and
k, are the corresponding natural frequencies, ¢, and (, are the dimensionless
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relative damping coefficients, 2 is the measured angular rate, which is
orthogonal to the axes of primary and secondary motions, ¢, and g, are the

generalized accelerations due to the external forces acting on the sensitive
element. The remaining dimensionless coefficients are different for the sensitive
elements exploiting either translational or rotational motion. They can be
calculated using expressions given in the table 1, were m; and m, are the

masses of the outer frame and internal massive element in case of translational
motion, and corresponding moments of inertial for the rotational motion (for
greater details see [5]).

Table 1. Dimensionless parameters of the CVG dynamics

Translational Rotational
d 1 (T + 13 =11y =1,/ (I} + 1)
d, 1 (I - 21)/[22
d mz/(m1+m2) (]21 ) ([11+[21)
& 2m2/(m1+m2) (

Iy + [21 23)/(111"’[21)
g 2 ([22 +1; — 23)/[22

In the presented above motion equations the angular rate is included as an
unknown and variable coefficient rather than an input to the double oscillator
system. In order to identify the angular rate one must detect secondary
oscillations of the sensitive element and measure its amplitude, which is
approximately directly proportional to the angular rate, and phase, which gives
the sign.

In order to make the equations (1) suitable for to the dynamic error
analysis we must make the following assumptions: angular rate is small
comparing to the primary and secondary natural frequencies so that

ki >>d Q7 ks >>d,Q° )
and rotational and Coriolis accelerations are negligible comparing to the
accelerations from driving forces

g%, +dQx, << ¢,(¢). (3)
Taking into considerations assumptions (2) and (3), motions equations (1) could
be simplified as follows:

i)+ 20k, + ki'x, = gy (2),

Xy + 28k, %, + kax, = g, Q% + Qx,.
Here we also assumed that no external driving forces are affecting the secondary
oscillations, which means that ¢, (t) =0. System of equations (4) is now

perfectly suitable for further transformations towards the desired representation
in terms of the unknown angular rate.

4
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Motion equations in amplitude-phase variables

As has been shown in [6], by means of a proper chosen phase shift of the
excitation voltage applied to the sensitive element, the excitation force could be
shaped to the perfect harmonic form. Using exponential representation of
complex numbers, such a driving force ¢,(¢) could be represented as

4,(t)= ¢, sin(or) =Im{g,ee’"} . (5)
Here o 1is the excitation frequency given in radians per second, ¢, 1s the

constant excitation acceleration amplitude. Non-homogeneous solutions of the
motion equations (1) or (4) for primary and secondary oscillations are searched
in a similar form

X (t) =Im {4, (e}, 4, (t) = Alo(f)ej(pm(t) ) 6
x,(6) =Im {4, (e”™}, A,(t)= Ay (1)e’*™ “, ©
where 4, and 4,, are the primary and secondary oscillation amplitudes, ¢,
and ¢,, are the corresponding phase shifts relatively to the excitation force.

Although these quantities are real, they are combined in complex amplitude-
phase variables 4, and 4,.

Substituting expressions (5) and (6) into equations (4) results in the
following motions equations in terms of the complex amplitude-phase variables
rather than real generalized coordinates:

{f'il F2(Ck + jo) Ay + (K — o7 +2jkE) 4 = quo,
Ay +2(Coky + j) Ay + (k] — 7 +2kyC0) Ay = (8,0 + Q) 4.
Equations (7) describe variations of the amplitude and phase of the primary and

secondary equations in time with respect to the unknown non-constant angular
rate )(¢). This allows conducting analysis of the Coriolis vibratory gyroscope

(7)

dynamics without constraining the angular rate to be constant or slowly varying.
System transfer functions

Having CVG sensitive element motion equations in the form (7) allows
analysis of its transient processes in amplitudes and phases with respect to
arbitrary angular rates affecting the system. However, in order to analyse the
system dynamic error we need its amplitude response from the angular rate. In
order to obtain the amplitude response the system transfer functions must be
obtained. Application of the Laplace transformation to the equations (7) with
respect to zero initial conditions for all time-dependent variables results in the
following expressions:

{[(sucof F 201k (s + j0) + K714, (5) = gy,

8
[(s + jo) +28,ky (s + jo) + k3 14, (5) = 4 (5)[s + jg,0](s). ®
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Solutions of the algebraic system (8) for the primary and secondary amplitude-
phase Laplace transforms are given as
410
A (s)= ,
1) (s+ jo) + 28,k (s + jo) + k]
4 _ Giols + jgr0]Q(s)
2(s) = R . 2 N2 . 27"
[(s + jw)™ + 205k, (s + jo) + ky ][(s + jw)™ + 28k (s + jo) + k7]
Considering the angular rate as an input, the system transfer function for the
secondary amplitude-phase is
s+ jg,m
W, (s) = — . q1o( . J&> ) . . —. (10)
[(s + jw)” +2C,k, (s + jo) + k5 [(s + jw)™ + 28,k (s + jo) + 7]
One should note that the transfer function (10) has complex coefficients that
results in the complex system output as well. Although it is somewhat unusual,
it still enables us to calculate amplitude response of the CVG due to the

harmonic angular rate. Apart from that, transfer function itself allows further
study of the Coriolis vibratory gyroscopes as an open-loop dynamic system.

©)

Amplitude and phase responses

In order to calculate the amplitude response of the system using transfer
function (10), Laplace variable s must be replaced with the Fourier variable jA,

where A is the frequency of the angular rate oscillations:
W,(jA) = jg o (0 + kg, 8w) /[k*8k* — (h + kdw)* + 2 jkSkESE(A + kdw)]

x[k* = (h + kdw)* + 2 jkC(h + kdo)]
Here the new variables are given by the following expressions:
k=k,0k=k,/k,d0=0/k,=C, 0(=C,/(,.
Similarly, by introducing the dimensionless relative frequency of the angular
rate as OAL =A/k, expression (11) can be simplified:
W,(jON) = jg,, (Oh + 2,8m)/ k> [8k* — (SA + Sw)* + 2 jSkLSE (S + Sw)]

12

x[1— (8 +8w)” +2jC(8A + dw)] (12

Absolute value of the complex function (12) is the amplitude response of the

secondary oscillations amplitude to the harmonic angular rate, and the
corresponding phase of the complex function is the phase response:

AL = ¢,y (Oh + 2,80) /K[ (8k* = (BA + Sw)*)* + 48k>C 8L (B + Sw)*1"* x
x[(1—(8h+8w)?)* +4L% (BA + dw)? "2

(11)

(13)
tan{@(8A)} = {[8k? — (BA + 8®)* ][1 - (A + dw)? ] — 48kE*SE(SA + dw)* }/

2L[SkSE(SA + 80)(1— (A + dw)?) + (8k? — (BA + 8w)* ) (8L + dw)]
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One should note that, assuming constant angular rate (oA = 0) in the expressions
(13) the well known expressions ([5]) for the amplitude and phase of the
secondary oscillations could be obtained.

Dynamic errors analysis

Dynamic error of the CVG can by analysed in terms of the amplitude
distortions due to the angular rate frequency as well as in terms of the
corresponding distortions of the phase. In an ideal case, amplitude and phase of
the secondary oscillations for the harmonic angular rate must by the same as for
the constant one. This allows defining the dynamic error both for the amplitude
and phasing as follows:

_AGY oM

A0 77 9(0)
Errors (14) are dimensionless and are equal to 1 in the ideal case.

Let us first study the phase dynamic error. Except of the relative angular
rate frequency, phase dynamic error depends on such design parameters of the
sensitive element as relative excitation frequency om, natural frequency ratio
Ok , relative damping ratio 6, and damping factor of the primary oscillations
C . As has been shown in [1], it is advantageous to excite the sensitive element at
the natural frequency of primary oscillations (dw=1). In this case graphic plot
of the phase dynamic error for different primary damping factors is shown in the
figure 1.

Analysis of this graph suggests that although it appears that the best case
is the absence of damping at all, the presence of even a small amount of
damping significantly increases the phase dynamic error. At the same time,
increasing the damping causes the error to approach the ideal case.

Let us now study the amplitude dynamic error. Substituting the amplitude
(13) into the (14) gives the expression for the amplitude dynamic error:

E ,(8)) = {(S) + g,0w)[(8k* —dw?)* + 48k*C 8,80 ]2 x
x[(1-8w?)* + 4578012} /{g, [ (8k* — (8 + dw)?)* + . (15)
+A3K2C28C7 (Sh + 8w) 2 12 [(1 — (A + dw)?)? + 4L (BA + dw)* 12}

Note that amplitude dynamic error, given by (15), doesn’t explicitly depend on
the primary natural frequency. Maximisation of the CVG sensitivity requires

(14)

A

small natural frequency of the primary oscillations, due to the k* term in the
denominator of the amplitude (13). Providing the necessary bandwidth of the
sensor requires keeping the amplitude dynamic as low as possible (namely 1)
within that bandwidth.

Graphic plot of the amplitude dynamic error as function of the primary
oscillations damping coefficientl and relative frequency of the angular rate is

shown in the figure 2. From this graph one could see, that decreased damping
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results in significant dynamic error even for the small frequencies of the angular
rate. On the other hand, increased damping causes the drop between peaks to
diminish, thus providing low values for the dynamic error.
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Fig. 1. Phase dynamic error

(solid line - £ =0.02, dashed line - £ =0, 0k =1.1, dw=1,0L =1)

0.2

Fig. 2. Amplitude dynamic error
(0k=1.1, 6w=1,8C =1)

Amplitude dynamic error has two maximums and one local minimum
along the rate frequency axis that are clearly visible on the figure 2, especially in
the case of low damping. Positions of these extremums can be found from the
following equation:

d

ain Eam =0, (16)
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General solution of the equation (16) is quite difficult to analyse. However, in
case of zero damping it can be significantly simplified and its solutions could be
found from the following equation:

(A +80)[1+ 8k —2(81 + 8»)* |[8k* — (BA +8w)* ][(BA + dw)* —1]=0.  (17)
Three positive roots of the equation (17) are

2
S\, =1-80, 87»2:1/1+28k ~ 50, Sy =5k —d0. (18)

Here the first and the last roots correspond to maximums, and the second one to
the minimum.

In general terms, optimization of the bandwidth means providing the same
zero level of the amplitude dynamic error at each of three extremums in vicinity
of the given by (18) frequencies of the angular rate. Amplitude dynamic error
level at the second maximum, which corresponds to 0\, can be controlled by

the damping ratio oC if it is a root of the following equation:
E () =1. (19)

Positive solution of the equation (19) assuming ow =1 is
8C = (8k* —1)(Sk + g, —1)/ Sk[ g3 (8k* +8k°® — 45> +28k* (2% 1)) —

—4C% (8k —1)" ~8g,67 (8k —1)]"”
Now let us find the damping C that satisfies the equation
E, (8),) =1, 21)
where 0C is given by the expression (20). In this case equation (21) will include
only depend on natural frequencies ratio and unknown damping C. Full

expression for the equation (21) is quite large to be shown here, however it
could be easily solved numerically. Graphic plot of the amplitude dynamic error
as a function of damping C and with respect to the optimal damping ratio (20) is
shown in the figure 3.
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Fig. 3. Minimal dynamic error damping
(solid line - 6k =1.05, dashed line - 6k =1.1)
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For example, optimal damping parameters for 0k =1.05, are (=0.018,
L =0.921. Amplitude dynamic error for this case is shown in the figure 4.

oA
Fig. 4. Optimized amplitude dynamic error

One should also note that achieved level of the amplitude dynamic error could
further improved if the objective level of the dynamic error in equations (19)
and (21) is set to 1—e instead of 1, where e is the acceptable value of the
dynamic error.

Bandwidth realization

Based on the presented above analysis of the dynamics errors of the
CVGs, necessary bandwidth can be achieved by means of proper choice not
only of the natural frequencies ratio, as was suggested in [5], but by providing
proper damping of the primary and secondary oscillations as well.

In order to provide necessary bandwidth, natural frequencies ratio could
be chosen based on the position of the second maximum in the amplitude
response:

Ok =0A, +00. (22)
Here OA, is the required bandwidth in the dimensionless form, related to the

natural frequency of primary oscillations. After the natural frequency ratio is
calculated using (22), the result is used to calculate necessary damping for the
primary oscillations. The latter problem can be solved either numerically or even
analytically for some simplified cases. Having now calculated proper frequency
ratio and primary damping, corresponding secondary damping is calculated
using the ratio (20).

Considering the fact, that providing necessary damping in the CVGs is not
an easy task, optimal values can be implemented using closed-loop operation
both for the primary and secondary oscillations.
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Conclusions

From the presented above study of dynamics errors of the Coriolis

vibratory gyroscopes the following conclusions can be made:

Using amplitude-phase variables instead of generalized coordinates allows

obtaining proper transfer functions, where input is the measured angular

rate, rather than actuation.

Using suggested above procedure, CVG bandwidth can be realized more

efficiently by tuning not only the frequency ratio, but damping as well.
Further study is required to devise algorithms for the closed-loop

operation in order to ensure damping optimal in terms of bandwidth realization.

[1]
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V. A. Apostolyuk
DYNAMIC ERRORS OF CORIOLIS VIBRATORY GYROSCOPES

Analysis of the Coriolis vibratory gyroscopes sensitive element dynamics in
terms of the amplitude-phase variables leading to the proper transfer functions
of such inertial sensors is proposed in this paper. Obtained transfer function is
used to derive expressions for the amplitude and phase response of such sensors,
which in turn allows proper analysis of its dynamic errors. Based on the
dynamic errors analysis, bandwidth realization method for Coriolis vibratory
gyroscopes 1is presented as well.

B. O. Anocronrok
JUHAMIYHI IOXUBKHU KOPIOJICOBUX BIBPAHII7IHI/IX
I'TPOCKOIIIB

B miif crarri mpeAcTaBiIeHO aHANI3 JUHAMIKKM YYTJIMBOTO  €JIEMEHTA
KopionicoBux BiOpariifHUX TipOCKOMIB B aMIUTITyIHO-(a30BUX 3MIHHUX, IIO0
BEJIe 10 BUBEACHHS KOPPEKTHOI mepenaTHOl (YHKIIT TakuX iHEPIiaJbHUX
natuaukiB. OTpumana nepeaatHa QyHKIIIST BUKOPUCTaHA sl BUBSACHHS BUPA3iB
JUIST aMIUTITYAHO- Ta ()a30-4aCTOTHUX XapaKTePUCTUK JIAaTYUKIB, IO B CBOIO
yepry JO03BOJWIM BHUKOHATH aHali3 iX JWHaAMIYHMX IOXHOOK. Ha ocHoBi
MPEICTABIICHOTO aHali3y JWHAMIYHMX TOXHOOK OyJI0 OTPUMAHO METOJ
3a0e3MedeHHs] TMOoJocH mpomyckanHs Juisi  KopiomicoBux — BiOpamiitHUX
TipPOCKOITIB.

B. A. Anioctoirox
JUHAMMUYECKHUE ITIOT'PEINHOCTU KOPUOJIMCOBBIX
BUBPAIIMOHHBIX TMPOCKOIIOB

B aToli cTarbe NpencTaBiICH aHaIW3 JMHAMUKU YYBCTBUTEIIBHOTIO JJIEMEHTA
KopuonucoBeix  BHOpAallMOHHBIX  THUPOCKONOB B aMIUIUTYIHO-(Pa30BBIX
IIEPEMEHHBIX, KOTOPBIM IMO3BOJSET MOJYYUTh KOPPEKTHYIO MEPEAATOYHYIO
GYHKIMIO TakuX WHEPUUAIbHBIX AaTdyukoB. llomyueHHas mnepegaTouyHas
GyHKIMSA UCTIONB30BaHa JUIsl TTOJIYYSHUS BBIPAXKCHHM IS aMIUTUTYTHO- U (pa3o-
YAaCTOTHBIX XAPAKTEPUCTUK JAaTYMKOB, YTO B CBOK OYEPEAb ITO3BOJIMIO
BBIIIOJIHUTh  AaHAIW3 MX JHUHAMHYECKUX ImorpemHocred. Ha  ocHoBe
MPEICTaBIIEHHOTO aHAIN3a JMHAMUYECKUX MOTPEIIHOCTEH OB MOJy4YeH METOJ
oOecrieyeHusi TMOJIOCHI TMpomyckanusi s KopuonncoBbix BHOpPAIIMOHHBIX
TUPOCKOIIOB.



