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Introduction

In view of constantly growing market for micromechanical angular rate
sensors Coriolis vibratory gyroscopes (CVGs) have received significant amount
of attention from the MEMS sensors design specialists due to the promising
possibility to fabricate sensitive elements of such gyroscopes in miniature form
by using modern microelectronic mass-production technologies. While
conventional angular rate measurement is based on detection of the rotation
induced oscillations amplitude (secondary amplitude) [1], trajectory analysis
approaches are utilised as well [2, 3]. The latter also allows designing rate
integrating sensors, which are more suitable for attitude and navigation
applications [3, 4]. This paper addresses problems related to modelling angle of
the sensitive element motion trajectory rotation due to the presence of the
external angular rate.

Problem formulation

It is well known that in general case motion trajectory of the CVG
sensitive element is an ellipse. Angle of the trajectory rotation in steady state is
proportional to the angular rate. Major goal of this paper is to study dynamics of
the sensitive element motion trajectory due to the external angular rate, and to
develop its transient process mathematical model. Obtained model can be later
used to improve performances of the Coriolis based angular rate sensors.

Sensitive element motion trajectory

One could consider the CVG sensitive element as a two-dimensional
pendulum, whose steady state trajectory forms a rotated ellipse, as shown in
Figure 1. In this figure, a and b are the big and small half-axes of the ellipse, 0 is
the angle of the ellipse rotation relatively to the axes of primary x; and
secondary x, oscillations. It is well-known, that these parameters (namely half-
axes and angle of rotation) depend on amplitudes and phases of primary and
secondary oscillations, which in turn depend on parameters of the sensitive
element design and unknown angular rate. The problem, which is to be
addressed in this paper, is to develop and analyse mathematical model of the 6
angle transient processes due to the angular rate.
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Fig. 1. Sensitive element motion trajectory

In general case, angle of the trajectory rotation is given by the following

expression [2]:
0= tan" —2‘41;42 =20 (1)
2 A — 4,
Here 4, and 4, are the primary and secondary amplitudes of the sensitive

element oscillations, ¢ is the phase shift between the primary and secondary
oscillations. In order to calculate these amplitudes as functions of the angular
rate, let us analyse dynamics of the CVS sensitive element.

Sensitive element dynamics

In the most generalized form, motion equations of the CVG sensitive
element both with translational and rotational motion could be represented in the
following form [1]:

{551 + 20,k %, + (k= d\Q)x, + g/, + dsQx, = ,(¢),
%y + 20,k % + (K — d, 07 )x, — g, — Q= g, (¢),
Here x, and x, are the generalized coordinates that describe primary (excited)
and secondary (sensed) motions of the sensitive element respectively, &, and &,

(2)

are the corresponding natural frequencies, {, and (, are the dimensionless

relative damping coefficients, Q is the measured angular rate, which is
orthogonal to the axes of primary and secondary motions, ¢, and ¢, are the

generalized accelerations due to the external forces acting on the sensitive
element. The remaining dimensionless coefficients are different for the sensitive
elements exploiting either translational or rotational motion. For the translational
sensitive element they are d, =d, =1, dy =m,/(m, +m,), g =2m,/(m, +m,),
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g, =2, where were m; and m, are the masses of the outer frame and the
internal massive element.

Steady state solution of the equations (2) in terms of amplitudes and
phases of primary and secondary oscillations can be represented as follows:

A] — QIO ,
21— 80%)? + 40280’
4, = 48,00 5Q,
ok + 80 — 28k 8w (1-262) 3)
20mC,
¢ = —arctanm,

— Sk — (1+4¢,8,8k +8k*)d0* + dw*
28k30(, + &,0k) — 2807 (&, +&,8k)
Here ¢q,, 1s the amplitude of accelerations created by the primary excitation

Py =

system, k is the primary natural frequency, 0w = w/k is the relative excitation
frequency, ok =k,/k, 1s the ratio of the secondary and primary natural

frequencies, Q2 =Q/k 1is the relative angular rate. Angular rate is assumed to
be negligible in comparison to the natural frequencies.

One should note that the sensitive element trajectory parameters depend
on the phase shift ¢ =¢, — @, between primary and secondary phases. Most

importantly, based upon (3), phases of do not depend on angular rate. In case of
the primary resonance (0w =1), cosine of this phase shift can be calculated as
0 2C,0k
= : 4
Okt —2(1-202)8k +1 )
Expressions (3) along with the phase shift representations (4) can now be used
to analyse parameters of the actual trajectory of the CVG sensitive element.

However, dependencies (3) and (4) are the steady state solutions, which do not
allow studying transient processes when external angular rate is applied.

COoS

Trajectory rotation angle

As has been demonstrated in [5], Laplace transformation of the
secondary amplitude with respect to settled primary oscillations is

_ 91082
T TR ©®)

Using expressions (3-5) we can modify expression (1) to the following form

I 4g,k(s + kC,0k)cos
O(s) =7 tan {[4@ + kC,5K) — 22k 2507 (5)] OAs) .

(6)
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Apparently expression (6) is non-linear in terms of the input angular rate.
However, taking into account that relative angular rate is small (0Q <<1),
expression (6) can be linearised with respect to the small 62 as follows:
kC,0k
gi = 2\s7.2 B€X(s). (7)
(s + kC,8K)[8k* — 21— 282)0k> +1
Finally, assuming matching natural frequencies of primary and secondary
oscillations (0k =1), expression (7) can be further simplified to
gk
0(s) ® —=—-0CU(s).
(5) 2o+ k) (5) (8)
Steady state of the obtained expression (8) is in perfect agreement with the
previously published steady state expressions for the motion trajectory angle of
rotation [2].
Corresponding to (7) and (8) transfer functions from the relative angular
rate to the trajectory rotation angle are as follows:

0(s) =~

P (s) =)

5Q(s)
- g,kC,0k
(s AC,0h 5K —2(1-262)5k2 +1 ©)
~ g,k
2s+kC,)

Transfer functions (9) can now be used to synthesise systems to control sensitive
element motion trajectory as well as to implement advanced methods of the
angular rate measurements.

Numerical simulations

Numerical simulation of the sensitive element motion trajectory based on
the equations (2) is shown in Figure 2.

Primary oscillations are assumed to be already settled and constant
angular rate is applied. Corresponding simulations for the angle of trajectory
rotation are shown in Figure 3.

Here dashed line corresponds to the simplified approximation (8). One
can see that significant steady state error is present, which reduced usability of
the derived simplified model (8).
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Fig. 2. CVG sensitive element motion trajectory
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Fig. 3. Transient process simulations
(solid — accurately simulated, dashed — simplified approximation,
dotted — improved approximation)

Improved transient process representation

Analysing expression (8) one can see than in steady state (s = 0) value of
the 0 angle is given by the simple ratio g, /2. From the numerical simulation

in Figure 3 (dashed line) it is apparent that this value is not sufficiently accurate,
while dynamic part appears to be acceptable. More accurate steady state value
can be obtained directly from the expression (6), which results in the following
improved approximation:

49.0,5k ¢, kk
JOk* —2(1-202)8k> +1 |5+ C,kSk

Numerical simulations of the improved approximation (10) are represented by
the dotted line in Figure 3. One can see that improved approximation (10) is

Q(s). (10)

|
0(s) = —tan
(s) 5
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accurate in representation of the angle of trajectory rotation transient processes
for most of the practical applications.

Conclusions

Developed model for the angle of trajectory rotation of a CVG sensitive element
allow designing miniature angular rate sensors based on the trajectory analysis
contrary to the conventional secondary amplitude detection. Derived transfer
functions can be used to develop filtering and control systems that will improve
its measurement performances. The latter is suggested as a topic for the future
research.
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Mathematical model of the CVG sensitive element motion trajectory angle of
rotation has been developed in this paper. Accurate and approximate angle of
rotation transfer functions were obtained and studied in terms of the transient
process analysis. Performances of the developed models were demonstrated
using numerical simulations.
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B. AnocTosrok

ANHAMIKA KYTA IIOBOPOTY TPACKTOPII PYXY V KOPIOJICOBUX
BIBPAIIIMHUX I'TPOCKOIIIB

B wmiit crarti Gyna po3pobieHa MmaTeMaTuyHa MOJIEb KyTa MOBOPOTY TPAEKTOPIT
pyXy 4YYTIMBOTO €JEMEHTa KOpioJlicoBoro BiOparmiiHoro ripockomna. bymno
OTPUMAHO TOYHI Ta HAOMWKEHI mepenaTHl (QYHKII IS HbOTO KyTa, sKi Oyio
BUKOPHUCTAHO JJIS aHATI3y BIAMOBIIHUX MEPEX1IHUX MPOIECiB. XapaKTEPUCTHUKU
po3po0IeHNX Mojeel OyJlo JOCHIHKEHO 3a JIOMOMOTOK) YHCEIBHOTO
MO/JICJTFOBAHHSI.
KarwuoBi cjoBa: kopioyicoBuil BiOpaliifHUN T1pOCKOI, YyTJIMBUN

eJIEMEHT, TPAEKTOPIS PyXy, MePEXiTHHUMA MpoIeC

B. AnocTosrok

JIMHAMUKA VIJIA TIOBOPOTA TPAEKTOPUM JBWXEHUA V
KOPHNOJINCOBBIX BUEPAITMOHHBLIX T'MPOCKOITOB

B ar1oii cratbe Obuta pa3paboTaHa MaTeMaTH4ecKas MOJENb YIyla MOBOpPOTa
TPACKTOPUH  JIBWXKEHUS ~ UYyBCTBUTEIBHOTO  BJIEMEHTa  KOPHOJIUCOBOTO
BUOPALIMOHHOTO THPOCKOMa. bBbulM MMOJNydeHbl TOYHBIE M TNPUOIMKCHHBIC
nepeaaToyHbie PYHKIUU JUIsl 3TOr0 YIJia, KOTOpble ObUIM MCIOJIb30BAHbBI IS
aHaiM3a COOTBETCTBYIOLIUMX IMEPEXOJHBIX MPOIECCOB. XapaKTEPUCTUKU
pa3paboTaHHBIX MojieNied ObLIM UCCIENOBAHbl TPU TMOMOIIM YHMCIEHHOTO
MOJIEJIMPOBAHUSI.

KiroueBble ci1oBa:  KOpPUOJNMCOBBIM  BHOpAlMOHHBIM  THPOCKOII,
YYBCTBUTEIBHBIN 3JIEMEHT, TPACKTOPUS ABUKEHUS, TIEPEXOAHON MpoLiece



