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Introduction 
Simulated natural evolution being applied to the multi-parameter and multi-

objective global optimisation problems have already resulted in a well established 
group of so-called evolutionary algorithms [1, 2]. At the same time, constantly 
increasing computational power of the microprocessors significantly widens areas 
of application for such algorithms. Application of conventional genetic algorithms 
to predictive control with fixed prediction horizon (PH) has been in active 
development during the last decade [3, 4]. Variable length genetic algorithms 
(VLGA) that allow implementing variable PH optimal control are still under 
investigation, which already uncovered certain problems. For instance, converging 
to an optimal solution may take significant amount of generations in comparison 
with the state space traversal approach [5]. One way to improve the performances 
of VLGA is to optimize parameters of the algorithm, such as population size and 
probabilities of genetic operations. Some results on search of the best such 
parameters are presented in this paper. 
 

Benchmarking control problem 
Formulation of general optimal control problem is well known and here we 

shall give emphasis only to the aspects that are essential to the subject. Let the state 
of the system at time t  be a vector )}(),...,({)(
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control we model as an m-dimensional vector function of time 

)}(),...,({)(
1

tututu
m




. The components of )(tu


 are allowed to be piecewise 

continuous and the values they can take are bounded so that at any time t , )(tu


 

lies in some bounded region U of the control space. Without loss of generality we 

impose the restriction 1iu , mi ,...,1 . Such controls are deemed admissible in 

terms of the considered algorithms.  
The benchmarking testing case is the control of a linear system that is defined 

by simple ordinary differential equations 
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from the state }1,1{
0
x


 to the state }0,0{gx


 with respect to the minimal 

transition time. Although the system (1) is simple and linear, it will be presented to 
the algorithm as a purely numerical model. System (1) will be controlled with 
presence of constraints, which are given by the following system of inequalities, 
defined in the state space:  
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The controls are allowed to have only three admissible values }1,0,1{0 u


, and 

the control time step is 25.0t s.  
 Algorithm structure is presented in a form of a flow-chart shown in the 
figure 1 and 2 below [6]. 
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Fig. 1. Evolutionary control algorithm 
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Fig. 2. New controls generating 
process 

 
Here figure 2 depicts insides of the “generate controls” block of the flowchart in 
the figure 1. 

Defined by the (1) and (2) control problem has known optimal solution shown 
in the figures 3 and 4 below. Rigorously speaking, this solution is rather sub-
optimal, but the best achievable under given conditions (piecewise constant 
controls and fixed control time step). 
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Fig. 3. Minimal time optimal control 
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Fig. 4. Minimal time state-space trajectory with constraints 

 
One should also distinguish acceptable solution and optimal solution. 

Acceptability means that control error is tolerable, but the best value for the cost 
function is not yet reached. Needless to say that the first one is found a lot sooner 
that the optimal one. In a sense, as soon as the acceptable solution is found, 
applying of the control function could already start. 

In terms of parameters optimization, not every parameter of the algorithm is 
susceptible to optimisation. For example, crossover rate (probability of applying 
crossover) is obviously must be as high as possible (it is assumed to be 1 during 
the benchmarking).   
 

Population size 
Let us first analyse how performances of the algorithm are affected by the 

population size. Algorithm was executed 10 times for each value of the population 
size. As a criterion for the performances evaluation we take an averaged value of 
the achieved cost function for acceptable and final solutions, and averaged amount 
of the generations required to find these solutions. Results of the simulations are 
presented in the figures 5-7.  
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 From these figures one can see that both in terms of the number of 
generations and achieved cost function values (the less the better) an optimal 
population size can be easily identified. 
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Fig. 5. Acceptable (dashed) and final (solid) values of cost function 
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Fig. 6. Averaged final value (solid), best (dotted), and worst (dashed) 
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Fig. 7. Generations to acceptable (dashed) and best (solid) solutions 
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Optimal population size apparently is about 40 to 50 for the problem under 
consideration. While it is possible that other problems may have another optimal 
population size, the shear existence of such optimality requires further 
investigation. 
 

Length modification 
Another important parameter of VLGA is the rate of the length modification. 

This parameter explicitly affects the capability of the algorithm to find the optimal 
value of the unknown variable control horizon (CH). Testing results are shown in 
the figures 8-10 below. 
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Fig. 8. Acceptable (dashed) and final (solid) values of cost function 
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Fig. 9. Averaged final value (solid), best (dotted), and worst (dashed) 

 
From the analysis of these results it easy to see that high modification rates 
degrade performances of the algorithm while searching for the optimal solution in 
vicinity of the best control length. At the same time, if the current population of 
control functions is far from the optimal length, high values of the modification 
rates might be required to reach the acceptable solution. 

One can see that if the averaged length is within the optimum (as is the case in 
these test), then modification rate 0.05-0.1 delivers the best results. 
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Fig. 10. Generations to acceptable (dashed) and best (solid) solutions 

 
Conclusions 
Presented above study shows that proper choice of such VLGA parameters as 

population size and modification rate may significantly performances of the 
algorithm compare to previously reported results [6]. For example, in terms of the 
generations to best solution, 6 times improval has been achieved with the 
suggested above parameters. 

Nevertheless, further study on dynamics of the algorithm during length search 
stage, and problem specific parameters optimisation are still required. 
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