
Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

Application of State Space Search Algorithms to Optimal Control

V. Apostolyuk

National Technical University of Ukraine
“Kiev Polytechnical Institute”

Kiev, Ukraine
apostolyuk@astrise.com

Introduction

State space search is usually used in the field of artificial intelligence, in which successive

states of an instance are considered, with the goal of finding a path to some desired state. Many
different searching algorithms were also developed for the connected graphs or trees traversing
[1-3]. Application of such algorithms to continuous state-space is somewhat difficult since it leads
to the potentially infinite number of possible states after space partitioning on one hand, or loss of
the accuracy on the other. At the same time solving optimal control problems with the existing
algorithms often considered to be impractical due to the exponential growth of the states to be
analysed. This paper addresses the mentioned above problems as well as other important aspects of
solving the optimal control problems.

Optimal control problem

Formulation of general optimal control problem is well known [4] and here we shall give

emphasis only to the aspects that are essential to the subject. Let the state of the system at time t be

a vector)}(),...,({)(1 txtxtx n


 in an n-dimensional Euclidean space which we shall call the state

space X . The steering device or control we model as an m-dimensional vector function of time
)}(),...,({)(1 tututu m


. The components of)(tu


 are allowed to be piecewise continuous and the

values they can take are bounded so that at any time t ,)(tu


 lies in some bounded region U of the

control space. Without loss of generality we impose the restriction 1iu , mi ,...,1 . Such controls

are deemed admissible in terms of the considered algorithms.
We shall study systems whose behaviour can be modelled by the most general state transfer

function F that calculates state of the system given its current state and control vectors:
 )(),()(tutxFttx


 . (1)

Function F here is assumed to be defined for all Xx


 and all admissible u


.
This approach to system representation significantly expands number of systems that could

be successfully controlled compared to the conventional systems representation via systems of
either ordinary or non-linear differential equations.

We now wish to control the system from the initial state)(0tx


 to the given final state)(dtx


.

It is also could be done in such a way that some cost functional

 
1

0

)(),(0

t

t

dttutxfJ


 (2)

is minimized. We are, of course, assuming that there are admissible controls that transfer the system
from)(0tx


 to)(dtx


 and we are looking amongst this subset of admissible controls for a control that

minimizes J .
In order to apply inherently discrete state-space traversal algorithms to this problem it is

necessary to introduce certain level of discretization to the optimal control problem formulation.

Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

System state transition

Let us assume that every component of the control vector)}(),...,({)(1 tututu m


 can take a

value only from the given fixed set of possible values: },...,{)(1
 pi uutu . In this case control vector

)(tu


 has pms  different possible fixed values  suutu


,...,)(1 . Application of the control

)(ii tuu


 to the system at the current state)(ii txx


 can result therefore in s new states at the next

moment of time ttt ii 1 . In terms of the optimal control problem formulated earlier we are

searching for the finite sequence of q control inputs },...,{)(1
 si uutu


 that transfers the system from

its initial state 0x


 to the desired state dx


.

0x


1x


1u


2u


dx


du


…

Figure 1. System state transition

Each of the control iu


 is assumed to be acting on the system and remained constant within the time

interval t . Such a limitation causes the found solution to be a sub-optimal rather than optimal, to
which it tends when 0t .

State-space search algorithm

As a framework and a starting point for the further development the A-Star algorithm is used

[2], which could be considered as a modification to the well known Dijkstra’s connected graph
traversing algorithm [1]. The proposed modification of these algorithms, which is used for control
searching, is shown in the Table 1.

Here the variable x holds the current state ix


 of the system as well as the control that leads

to this state, successor states x’ are the system states 1ix


 that were produced by applying different

controls from the given set },...,{ 1

suu


 to the system (1).

There are four functions in the algorithm that completely define its operation: “Equal”,
“Constrained”, “Cost”, and “Score”.

The “Equal” function compares the two given states and returns True if these states appear
to be the same based on the chosen criteria. The simplest criteria would be to compare the
Euclidean distance between the two states with some threshold function

),(jiji xxDxx


 . (3)

Here the threshold function),(ji xxD


 could be simply related to the constant acceptable error of

control, or could also depend on either one or both of the compared states. Alternatively, the criteria
could be based on the states vectors element comparison. One should note that this function is also
heavily used to find the given state in the lists of closed and open states.

The “Constrained” function is used to check any state against known constraints. It returns
True if the state falls under any of the constraints in the system. There is no required special form
whatsoever, to which constraints should be limited in such an algorithm. The “Cost” function
implements calculation of the cost functional (2).

Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

Table 1. Listing of the algorithm framework

01 function FindControl : Boolean;
02 var
03 x : state;
04 x’ : state;
05 Open : priorityqueue;
06 Closed : list;
07 begin
08 push x0 on Open
09 while Open is not empty do begin
10 pop state x from Open
11 if Equal(x, goal) then begin
12 produce control to x;
13 result := true;
14 exit;
15 end;
16 for each successor x’ of x do begin
17 if Constrained(x’) then continue;
18 NewCost := x.cost + Cost(x, x’);
19 if (x’ is in Open or Closed)
20 and x’.cost <= NewCost then continue;
21 x’.cost := NewCost;
22 x’.Score := Score(x’);
23 if x’ is in Closed then remove x’ from Closed;
24 if x’ is not in Open then push x’ on Open;
25 end;
26 push x on Closed
27 end;
28 result := false;
29 end

Finally, the “Score” function must provide the criteria for prioritizing states in the “Open”

priority queue. In the classical A-Star algorithm this function returns sum of the cost),(0 ixxC


 to

the given state and some heuristic evaluation of the cost from the given state ix


 to the goal state dx


:

),(),()(0 diii xxHxxCxS


 . (4)

Another useful criterion that can be used to prioritize states in the queue is the angle between the
following two vectors: vector from the previous state to the current state, and vector from the
previous state to the goal state. This criterion is calculated as

11

11))((
1)(










idii

idii
i

xxxx

xxxx
xA 




. (5)

Additional scoring functions)(ixS


 can be derived combining criteria (4) and (5):

)()()(iii xAxSxS


  , (6)

)()()(iii xAxSxS


  . (7)

All of these scoring functions (4)-(7) can now be evaluated in terms of solving the optimal control
problem.

Algorithm testing

The testing case is the control of a linear system that is defined by simple ordinary

differential equations

Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

U
V

X

V

X

dt

d




































1

0

5.00

10
, (8)

from the state }1,1{0 x


 to the state }0,0{dx


 with respect to either minimal time or minimal

distance in the state-space. The system (8) will be controlled with and without presence of
constraints. The controls are allowed to have only three admissible values [-1, 0, 1], and the control
introduction time step is 0.25s. Algorithm is tested on Athlon64-3000 CPU with 1GB memory. For
the given conditions the algorithm testing results are presented in the Table 2.

Table 2. Algorithm testing results

Scoring
function

States Solution
time [s]

Distance States Solution
time [s]

Time [s]

 Distance (figure 2) Time (figure 4)
(4) – S* 3890 5.951 3.008 3000 1.984 3.25
(5) – A 251 0.031 3.008 304 0.044 11.25
(6) – AS* 341 0.036 3.008 353 0.051 11.25
(7) – A+S* 1683 0.697 3.279 1368 0.430 4
 Distance with constraints (figure 3) Time with constraints (figure 5)
(4) – S* 6642 14.672 4.48 5694 8.661 4.5
(5) – A 366 0.054 4.45 370 0.054 10.75
(6) – AS* 357 0.040 4.45 378 0.047 10.75
(7) – A+S* 2099 1.138 4.48 3011 2.144 4.75

The best found trajectories in state-space along with its control functions are presented in the
following figures 2-5.

X

V

0 0.5 1 1.5

-1

-0.5

0

0.5

1

1.5

X

V

0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]

U

0 2 4 6 8 10 12

-1

0

 Time [s]

U

0 1 2 3 4 5 6 7 8 9 10 11

-1

0

1

Figure 2. Minimal distance solution Figure 3. Distance with constraints solution

Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

X

V

0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

X

V

0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]

U

0 0.5 1 1.5 2 2.5 3 3.5

-1

0

1

Time [s]

U

0 1 2 3 4 5

-1

0

1

Figure 4. Minimal time solution Figure 5. Time with constraints solution

Analysis of the obtained results shows that the best results in solving minimal distance

problem are achieved with the directional scoring function (5). Although the function (4) delivers
the most optimal control solution, while solving the minimal time problem, its performance is not
acceptable for the on-line applications. However, the scoring function (7) delivers near-optimal
solutions but in 4-5 times faster. Needless to say that the tested above scoring functions do not
cover all of the possibilities and certainly may require further developments with respect to the
different optimization criteria.

One should also note that the directional scoring (5) delivers the optimal solution at about
200 times faster than the conventional A-Star scoring (4). Such an improvement allows this
modification to be used in on-line control application as well.
Execution time of the algorithm is approximately linearly related to the square of traversed states
number. This dependence is shown in the figure 6. If the algorithm is intended for on-line
applications, the problem of reducing the states number without loss of accuracy is the most crucial
problem to be addressed.

States number

S
o
l
u
t
i
o
n

t
i
m
e

[
s
]

0 2000 4000 6000

0

2.5

5

7.5

10

12.5

15

17.5

Figure 6. Quadratic execution time of the algorithm

Conclusions

Investigated algorithms allow sophisticated and highly flexible control system to be

developed for the wide range of different systems. Solely by its nature the presented here approach
delivers the following benefits as compared to the conventional optimal control methods:

Proc. of VI Int. Conf. on Gyro Technology, Navigation, and Motion Control, Kiev, 2007, vol. 2, pp. 104-110

 Non-analytical system representation (state transfer function instead of differential
equations).

 Straightforward dealing with arbitrary constraints and optimization criteria.
 Both optimal control and trajectory planning problems are solved simultaneously.
 Insensitivity to unpredictable drift of system parameters.
 Simple and easy to implement algorithm structure.

Nevertheless, the vast amount of problems is still there, including the further improvement of
scoring functions for the specific optimisation criteria.

References

[1] Dijkstra E. W., “A note on two problems in connexion with graphs”, Numerische Mathematik, 1

(1959), S. 269–271.
[2] Nilsson N. J., “Problem solving methods in artificial intelligence”, McGraw Hill, 1971.
[3] S. Koenig and M. Likhachev. Real-Time Adaptive A*. In Proceedings of the International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 281-288, 2006.
[4] Pinch E.R., “Optimal Control and the Calculus of Variations”, Oxford University Press, 1993.

